Ш > | |

SP-300, SP-300 Ex two-wire compact ultrasonic level transmitter

Installation and Programming manual

Manufacturer: **NIVELCO Process Control Co.** H-1043 Budapest, Dugonics v. 11. Tel.: (36-1) 889-0100 Fax: (36-1) 889-0200 E-mail: sales@nivelco.com www.nivelco.com

BASIC CONCEPTS AND ELEMENTS

	APPROVALS	Reference document number
(Ex)	BKI ATEX, Certificate No.: BKI16ATEX0017X/2	spa380hu2111pb
Segurança	INMETRO, Certificate No.:DNV 14.0167 X – Rev. 02	spa3804p0600p_08
EAC	Ex Russia, Certificate No.: RU C-HU.MF62.B.04399	spa3804m0600p_03

CONTENTS

1. INTRODUCTION	6
2. TECHNICAL DATA	7
 2.1 General data 2.2 Additional data for explosion-proof certified versions	8 8 8
2.4 Accessories2.5 Order codes (Not all combinations are available)2.6 Dimensions	9 9 10
3. INSTALLATION	11
3.1 Liquid Level Measurement3.2 Open channel flow measurement4. WIRING	13
5. PUTTING INTO OPERATION	14
5.1. Usage 5.2. Special conditions of safe use	14 15

5.3. Programming	16
5.3.1. Measurement configuration	16
5.3.2. Current Output	22
5.3.3. Relay Output	
5.3.4. Digital communication	24
5.3.5. Measurement optimization	
5.3.6. Data logger	28
5.3.7. Volume (content) measurement	32
5.3.8. Open channel flow measurement	33
5.3.9. 32-Point linearization	
5.3.10. Informational parameters (read out parameters)	40
5.3.11. Additional parameters of the flow metering	41
5.3.12. Supplementary parameter of the logger	41
5.3.13. Other parameters	41
6. MAINTENANCE. REPAIR, AND STORAGE CONDITIONS.	. 42
6.1 Software upgrade	42
7. ERROR CODES	. 43
8. PARAMETER TABLE	. 44
9. SOUND VELOCITY VALUES IN DIFFERENT GASES	. 46

1. INTRODUCTION

Application

The **EasyTREK** compact ultrasonic level transmitters from NIVELCO are excellent tools for level measurement of liquids.

Level measurement technology based on the non-contacting ultrasonic principle is especially suited for applications where, for any reason, no physical contact can be established to the surface of the material to be measured.

Principle of Operation

The ultrasonic level metering technology is based on the principle of measuring the time required for the ultrasound pulses to make a round trip from the sensor to the level to be measured and back. The sensor emits an ultrasonic pulse train and receives the echoes reflected. The intelligent electronic device processes the received signal by selecting the echo reflected by the surface and calculates from the time of flight the distance between the sensor and the surface which constitutes the basis of all output signals of the **EasyTREK**.

A Total beam angle of 5...7° at -3 dB as is featured by most of NIVELCO's SenSonic transducers ensuring a reliable measurement in narrow silos with uneven side walls as well as in process tanks with various protruding objects. Furthermore, as a result of the narrow beam angle – the emitted ultrasonic signals have an outstanding focusing – deep penetration through gases, vapor and foam is ensured.

Diameters corresponding to 5° beam angle.

Minimum measuring distance (X_m) is determined by the design of the unit within which the measurement is not possible (Dead Zone) its value is according with P05 on page 18. Since measurement is impossible within this range material should not get into this zone.

Maximum measuring distance (X_M) is the greatest distance (determined by the design of the unit) which can be measured by the unit under ideal conditions. (See parameter **P04** on page 17). Maximum measuring distance of the actual application (H) must not be greater than X_M .

2. TECHNICAL DATA

2.1 GENERAL DATA

Transducer/housing materials	Polypropylene (PP), PVDF, PTFE / PP					
Process temperature	PP, PVDF and PTFE transducers -30+90 °C [-20+190 °F]					
Ambient temperature	-30+80 °C [-20+175 °F]					
Pressure ⁽¹⁾ (Absolute)	0.5…3 bar (0.05	0.3 MPa) [7.2543.5 psi]				
Seal	PP transducer: EPDM;	All other transducer versions: FPM				
Ingress protection	IP68					
Power supply	12 ⁽³⁾ 36 V DC with HART communication 48 mW720 mW, Galvanic isolation; protection against surge transient					
Accuracy ⁽²⁾	\pm (0.2% of the measured distance plus 0.05% of the range)					
Resolution	Depending on the measured distance: < 2 m: 1 mm, 2–5 m: 2 mm, 5–10 m: 5 mm, > 10 m: 10 mm [< 6.5 ft : 40 mil, 6.5 ft to 16 ft: 78 mil 16 ft to 32 ft: 200 mil > 32 ft: 400 mil]					
Analogue: 420 mA, (3.920.5 mA), Rtmax = (Ut – 11,4 V) / 0.02 A, Galvanic isolation; protection against surge tra						
Outputs	SPDT relay, 30 V / 1 A DC; 48 V / 0.5 A AC					
Serial communication: HART interface (terminal resistor 250 Ohm)						
Electrical connection	6×0.5 mm ² shielded cable \emptyset 6 mm x 5 m (available max. length 30 m)					
	[6 x AWG20 shielded cable \varnothing 0.25 inch x 16.5 feet (available max. length 100 feet)]					
Electrical protection	Class III SELV					

(1) For pressures below 1 bar representative of NIVELCO should be consulted.

(2) Under optimal circumstances of reflection and stabilised transducer temperature.

(3) Only partial operation is provided. Reliable operation without any restrictions is guaranteed at >13.4 V terminal voltage.

2.2 ADDITIONAL DATA FOR EXPLOSION-PROOF CERTIFIED VERSIONS

2.2.1 ATEX APPROVAL NO.: BKI16ATEX0017X/2

Туре	SPD-3DD-7Ex SPD-3DD-8Ex
Ex marking (ATEX)	⊕ II 1 G Ex ia IIB T6…T5 Ga
Intrinsically safe data	Ci \leq 28 nF, Li \leq 200 μ H, Ui \leq 30 V, Ii \leq 140 mA, Pi \leq 1 W
Ex power supply, loading	$Uo \le 30 V$, $Io \le 140 mA$, $Po \le 1 W$
Medium temperature	For PP transducer -20+70 °C [-4+158 °F], for PVDF transducer -20+80 °C [-4+176 °F] Temp. class T6, for PTFE transducer -30+90 °C [-22+194°F] Temp. class T5,
Ambient temperature	−20+70 °C [−4+158°F]

2.2.2 INMETRO APPROVAL NO.: DNV 14.0167 X - REVISION 02

Туре	SPD-3DD-7Ex SPD-3DD-8Ex
Ex marking (INMETRO)	Ex ia IIB T6T5 Ga
Intrinsically safe data	Ci \leq 28 nF, Li \leq 200 μ H, Ui \leq 30 V, li \leq 140 mA, Pi \leq 1 W
Ex power supply, loading	Uo < 30 V, Io < 140 mA, Po < 1 W
Medium temperature	For PP transducer -20+70 °C [-4+158 °F], for PVDF transducer -20+80 °C [-4+176 °F] Temp. class T6, for PTFE transducer -30+90 °C [-22+194 °F] Temp. class T5,
Ambient temperature	–20+70 °C [–4+158 °F]

2.3 SPECIAL DATA OF THE TRANSDUCERS

SPECIAL DATA FOR PP, PVDF AND PTFE TRANSDUCERS (ALSO APPLIES TO EX MODELS)

Туре	SP□-39	0-0	SP□-38	0-0	SP□-37	0-0	SP□-36□-□	SP□-34□-□	SPD-32D-D
Transducer material	PP, PVDF	PTFE	PP, PVDF	PTFE	PP, PVDF	PTFE	PP or PVDF		
Max measuring distance * (X _M) [m (ft)]	4 (13)	3 (10)	6 (20)	5 (17)	8 (26)	6 (20)	10 (33)	15 (49)	25 (82)
Min. measuring distance* (Dead band) (X _m) [m (in)]	0.2 (8)		0.25 (10)		0.35 (14		4)	0.45 (18)	0.6 (24)
Total beam angle (–3 dB)	6° 5°		7°		5	0	7°		
Measurement frequency		80 kHz		50 kH	łz	60 kHz	40 kHz	20 kHz	
Upper process connection				1" E	3SP thread				
Lower process connection	11/2" BSP / NPT thread 2" BSP /		2" BSP /	SP / NPT thread –		_			

* (from the transducer face)

2.4 ACCESSORIES

- Warranty Card
- Installation and Programming Manual
- EU Declaration of Conformity

2.5 ORDER CODES (NOT ALL COMBINATIONS ARE AVAILABLE)

	EasyTF	REK SP	3	민-민			I
TRANSDUCER MATERIAL	CODE	RANGE m	CODE	PROCESS CONNECTION	CODE	OUTPUT / CERTIFICATES	CODE
PP	Α	25	2	1"; 2" BSP thread	0	420 mA / HART / LOGGER	3
PVDF	В	15	4	2" NPT thread	N	420 mA / HART	4
PTFE / PP	Т	10	6	1" BSP quick conn. / PP	F	420 mA / HART / LOGGER / Ex	7
(only for SP-39/38/37)		6; 8*	7	Bracket 200 mm	K	420 mA / HART / Ex	8
		5; 6*	8	Bracket 500 mm	L	420 mA / Relay / HART	Н
		3; 4*	9	Bracket 700 mm	М	420 mA / Relay / HART / LOGGER	Α

The order code of an Ex-version should end in 'Ex'

* Measuring range depends on the material of the transducer

2.6 DIMENSIONS

10 / 48 spa380en2112p

3. INSTALLATION

3.1 LIQUID LEVEL MEASUREMENT

POSITION

The ideal position of the **EasyTREK** is on the radius r = (0.3...0.5) R of the (cylindrical) tank / silo. (Take also sonic cone on page 5 into consideration.)

SENSOR ALIGNMENT

The sensor face has to be parallel to the surface of the liquid within $\pm 2^{\circ}...3^{\circ}$.

TEMPERATURE

Make sure that the transmitter is protected against overheating by direct sunshine.

OBSTACLES

Make sure that no objects (cooling pipes, bracing members, thermometers etc.) protrude into the sensing cone of the ultrasonic beam.

Remark: EasyTREK programming allows one fixed object that would otherwise disturb the measurement to be blocked out. (see P29 of programming).

FOAM

Foaming of the liquid surface may render ultrasonic level metering impossible. If possible, a location should be found, where foaming is the least (device should be located as far as possible from liquid inflow) or a stilling pipe or well should be used.

STAND-OFF

The structure of the standoff pipe should be rigid; the inner rim where the ultrasonic beam leaves the pipe should be rounded.

WIND

are recommended.

FUMES / VAPOURS

	D _{min}					
-	SP🗆-39🗖	SP🗆-38🗖	SP🗆-37🗖			
150	50	60	60			
200	50	60	75			
250	65	65	90			
300	80	75	105			

device selection. Devices with lower measuring frequency

(40, 20 kHz) are recommended in these cases.

	D _{min}		
-	SP🗆-32🗖		
90	*	*	
200	*	*	
350	*	*	
500	*	*	

* For values contact your distributor

3.2 OPEN CHANNEL FLOW MEASUREMENT

- The unit is suitable for open channel flow measurement with the constructive works listed in 5.3.8.
- For ultimate accuracy, install the sensor as close as possible above the expected maximum water level (see minimum measuring range).
- Install the unit in a place defined by the characteristics of the metering channel along the longitudinal axis of the flume or weir. In case of Parshall flumes
 supplied by NIVELCO the location of the sensor is marked.
- In some cases, foam may develop on the surface. Make sure that the surface, opposite to the sensor, remains free of foam for proper sound reflection.
- The unit should be fixed so that it's position would not change.
- From measurement accuracy point of view the length of the channel sections preceding and following the measuring flume and their method of joining to the measuring channel section are of critical importance.
- Despite of the most careful installation, the accuracy of flow metering will be lower than that of specified for the distance measurement. The features of the flume or weir applied will determine it.
- Devices should be protected against overheating due to direct sunshine by using sunshades.

4. WIRING

- Make sure the terminals in the box are not under power (Use shielded cable 6 x 0.5 mm² [20 AWG]suggested in the technical data or stronger).
- After powering the necessary programming can be performed.

Wire colors:

 Green - relay C1 output independent)
 White - I, one of the points of current loop, power supply and HART (polarity independent)

 Yellow - relay CC output
 Brown - I, other point of current loop, power supply and HART (polarity independent)

 Grey - relay C2 output
 Black - GND, functional earthing and shielding point

Extension of the integrated cable:

Should extension be needed the use of connection box is suggested. The shielding of the two cables should be connected and grounded at the signal processing device.

5. PUTTING INTO OPERATION

5.1. USAGE

Subsequent to powering the correctly wired device would start to tick and after 10...20 s ECHO LED go on and 4...20 mA signal appears on the current output. Measurement will be according to the factory setting. The factory setting is throughout apt to check proper working and to perform simple measurement tasks but features residing in the unit can only be utilized by adjusting the **EasyTREK** to the application by programming. For sound knowledge of the operation features and proper solving of difficult measurement applications the parts of the programming should carefully be studied.

LED indication:

ECHO-LED

ON, if the unit detects proper echo

 COM-LED Blinking on HART communication Is ON in the state of remote programming

IrDA - Infrared communication port for logger readout, diagnostics and software upgrade

Device can be reset to factory setting. Default of EasyTREK SP-300 is the following:

- \Rightarrow Measurement: level (LEV)
- \Rightarrow Zero level assigned to the maximum distance
- \Rightarrow Current output proportional to the level
- \Rightarrow 4 mA and 0% assigned to zero level.
- \Rightarrow 20 mA and 100% assigned to the maximum level (minimum distance)
- \Rightarrow Error indication by the current output: holds last value.
- \Rightarrow Damping: 60 s.

View of the transmitter neck from above:

5.2. SPECIAL CONDITIONS OF SAFE USE

Diameter of the cable should match the cable conduit.

The cable outside the unit should be fixed so that it should be free of loading.

The terminal box should be selected in accordance with the electrical class of the area.

The device should read or programmed through IR port only outside of the explosive hazardous atmosphere because the infrared interface connected to the computer is not an explosion-proof apparatus.

Transmitter can only be powered by certified intrinsically safe current loop.

The PTFE enclosure of the transducer is plastic that can be loaded electrostatically therefore:

- · Filling and emptying speed should be selected according to the medium
- Fog development of the dangerous material during filling should be avoided.
- Cleaning of the plastic enclosure is not allowed in hazardous space.

The device can be mounted into tanks with up to 3 bar (43.5 psi) process pressure. The apparatus is not suitable as a fire-resistant barrier between the inside and the outside area. After mounting the unit, pressure test of the system should be carried out on a regular basis in accordance to the local regulations at 1.5 times higher pressure than the nominal pressure value.

5.3. PROGRAMMING

The HART interface of the EasyTREK provides for access to the whole parameter set and possibility of their programming. Parameter set can be reached in two different ways: by the use of the

- EView2 software run on the PC connected through HART modem to the loop or

- NIVELCO made MultiCONT multi-channel process control unit.

Since these access methods differ in their form and handling present manual does not review them. The information is contained in the relevant descriptions and user's manuals.

5.3.1. MEASUREMENT CONFIGURATION

P00: - c b a Engineering Units

FACTORY DEFAULT: 000

Programming of this parameter will result in loading the factory default with the corresponding engineering units. Therefore all parameters should be set again!

а	Operation
0	Liquid level measurement

b	Engineering units (according to "c")			
	Metric	US		
0	m	ft		
1	cm inch			

С	Calculation system
0	metric
1	US

P01: --1 a Measurement Mode

FACTORY DEFAULT: 11

Parameter value "a" will determine the basic measurement value that will be transmitted. Subsequently values for the relays are also relating to these quantities.

а	Measurement mode	Transmitted value	Display symbol
0	Distance	Distance	DIST
1	Level	Level	LEV
2	Level %	Level	LEV%
3	Volume	Volume	VOL
4	Volume %	Volume	VOL%
5	Flow	Flow	FLOW
L L	DIST 0	P11 P10 H 0	LEV % [%]

Transmitted value	DIST	LEV=H-DIST	LEV%=LEV [*] <u>P11-P10</u> H-X _m +P10
Parameters to set	P00 P01(a) = 0 P05 ≥ X _m	P00 P01(a) = 1 P04 = H P05 ≥ X _m	P00 P01(a) = 2 P04 = H P05 ≥ X_m P10 = $X_{0\%}$ P11 = $X_{100\%}$

Transmitted value	VOL f _{P40P45} (H-DIST)	VOL%= VOL * $\frac{P11 - P10}{H - X_m}$ + P10
Parameters to set	P00 P01(a) = 3 P02(b) P04 = H P05 ≥ X_m P40P45	P00 P01(a) = 4 P02(b) P04 = H P05 \geq X _m P10 = X _{0%} P11 = X _{100%} P40P45

A: Shortest measurable distance

B: Volume (content) pertaining to the greatest measurable levelC: Whole value of the vessel

D: diagram valid for the default value of P10 P11

P02: - c b a Calculation units

а	Temperature
0	C
1	°F

This table is interpreted according to P00(c), P01(a) and P02(c) and is irrelevant in case of percentage measurement [P01(a)= 2 or 4)]

	Volume		Weight (set also P32)		Volume flow	
a	Metric	US	Metric	US	Metric	US
0	m ³	ft ³	-	lb (pound)	m ³ /time	ft ³ /time
1	liter	gallon	tons	tons	liter/time	gallon/time

С	Time
0	S
1	min
2	hour
3	day

Attention!

EasyTREK is a level transmitter. Although it can be used for measuring weight, due to factors involved in doing so, accuracy may essentially be influenced.

P04 ---- Maximum Distance to be Measured (H)

FACTORY DEFAULT: X_M as per chart

This is the only parameter that has to be programmed for each application other than distance (however to avoid disturbing effect of possible multiple echoes it is suggested to do this in distance measurement applications too).

The maximum distance to be measured is the greatest distance between the surface of the transducer and the farthest level to be measured. The factory programmed, greatest distances (DEFAULT values) which **can be measured** by the units are listed in the table below. For the actual application the maximum distance **to be measured** i.e., the distance between the sensor and the bottom of the tank should be entered in P04.

EasyTREK	Maximum measuring distance X _M [m (ft)]			
Level transmitter for liquids	Transducer material PP / PVDF	Transducer material PTFE		
SPD-39	4 (13)	3 (10)		
SPD-38	6 (20)	5 (17)		
SPD-37	8 (26)	6 (20)		
SP□-36	10 (33)	-		
SPD-34	15 (49)	-		
SPD-32	25 (82)	-		

Since the **level** is determined by calculating the difference between the **value set in P04** and **distance (DIST) is measured** by the unit, it is essential that the correct value of (H) is set in **P04**. To obtain the best accuracy it is suggested that this distance is measured in the empty tank.

P05: ---- Minimum measuring distance (Dead zone – Close-end blocking)

FACTORY DEFAULT: X_m as per chart

The range, beginning with the sensor's surface, within which (due to the physical restraint of the ultrasound measurement system) measurement cannot be made, is called the dead zone. The **EasyTREK** will not accept any echo within the blocking distance set here.

Close-end blocking may be represented as the extension of the dead zone within which a possible echo will not be taken into consideration making possible to exclude disturbing objects near to the sensor.

Automatic Close-end blocking =Dead Band control (P05 = X_m)

Device with factory default will automatically set the smallest possible dead band depending on the conditions of the operation. This will be under optimal conditions a bit smaller in unfavorable circumstances greater than value given in the chart.

Manual Close-end-blocking with limitation \geq dead zone (P05 > X_m)

By entering a value, higher than the factory default the close-end blocking will be either the value programmed in P05 or the actual dead zone distance (influenced by the actual conditions of the application) whichever is greater.

EasyTREK	Minimum measuring distance X _m [m (in)]			
Level transmitter for liquids	Sensor material PP / PVDF	Sensor material PTFE		
S-39	0.2 (8)	0.25 (10)		
S-38	0.25 (10)	0.25 (10)		
S-37	0.35 (14)	0.35 (14)		
S-36	0.55 (14)	-		
S-34	0.45 (18)	-		
S-32	0.6 (24)	-		

FACTORY DEFAULT: 0

P06: ---- Far-end blocking

Far-end blocking is the range below the level set in parameter **P06**. The far-end blocking can be used to avoid disturbing effect of stirrer or heaters at the bottom of the tanks. Detecting echoes in this range the unit provides special signals.

A.) Measuring level or content

Level sinking below

- the value of P06 current output is according to the value of the far-end blocking and further
- below SUB 0 (7/8 of P06) the ERROR CODE 10 will be transmitted via HART

Level rising over value of far-end blocking:

The calculation of level and volume will be based on the programmed tank dimensions, therefore the measured or calculated process values will not be influenced in any way, by the far end blocking value.

B.) Open channel flow metering

Far-end blocking will be used for those small levels below which the accurate volume flow calculation is no longer possible.

- Level in the flume/weir sinking below the blocked-out range:
 - Output current value will be according to the value of Q = 0
 - 0 value transmitted via HART for display of "No Flow" or 0
- Level in the flume/weir rising over the blocked-out range:

The calculation of volume flow will be based on the programmed flume/weir data; therefore, the measurement values will not be influenced in any way, by the far end blocking value.

5.3.2. CURRENT OUTPUT

P08: Fixed current output FACTORY DEFAULT: 0 By this step the output current can be set for a fix value selected from between 3.8 mA and 20.5 mA. This function is not operational as per the factory default: 0. Attention: fixing output current will make settings in P10, P11, P12 and P19 irrelevant. P10: --- Value (of distance, level, volume or flow) assigned to 4 mA current output FACTORY DEFAULT: 0 P11: --- Value (of distance, level, volume or flow) assigned to 20 mA current output FACTORY DEFAULT: X_M – X_m

Values are interpreted according to **P01(a)**. Assignment can be made so that the proportion between the change of the (measured or calculated) process value and the change of the current output be either direct or inverse. E.g., level 1 m assigned to 4mA and level 10 m assigned to 20 mA represents direct proportion and level 1 m assigned to 20 mA and level 10 m assigned to 4 mA represents the inverse proportion. Please note that in case of programming for (LEV or VOL) % measurement the min and max value has to be entered in the relevant engineering units of LEV (m, ft) or VOL (m³, ft³).

FACTORY DEFAULT: 0

P12: ---a Error indication by the current output

In case of error the EasyTREK will provide one of the current outputs below for the time the error prevails. (For errors see Chapter 7).

а	Error indication by output current
0	HOLD (hold last value)
1	3.8 mA
2	22 mA

5.3.3. RELAY OUTPUT

Р13:а	- a Relay function						
а	Relay fu	Also set:					
0	DIFFERENTIAL LEVEL CONTROL (Hysteresis control) Relay is energized if the measured or calculated value exceeds the value set in P14 Relay is de-energized if the measured or calculated value descends under the value set in P15	P14 P15 Time Relay De-energised: □ ↑ ∬ C2 C1	P14, P15 There is a need to set (in level min 20mm [0.8 inch]) hysteresis between P14 and P15 P14 > P15 – normal operation P14 < P15 – inverted operation				
1	Relay is energized in case of Echo Loss		-				
2	Relay is de-energized in case of Echo Loss		-				
3	COUNTER Used for open channel flow metering. A 140 msec pulse is generated every 1, 10, 100, 1.000 or 10.000 m ³ according to P16.	20m ³ 10m ³ Relay Relay Hutomsec C2 C1	P16= 0: 1m ³ P16= 1: 10 m ³ P16= 2: 100 m ³ P16= 3: 1.000 m ³ P16= 4: 10.000 m ³				

In de-energized state of the device the "C1" circuit is closed.

FACTORY DEFAULT: 2

P14:	Relay parameter – Operating value	FACTORY DEFAULT: 0
P15:	Relay parameter – Releasing value	FACTORY DEFAULT: 0
P16:	Relay parameter – Pulse rate	FACTORY DEFAULT: 0

FACTORY DEFAULTS: P14=0, P15=0, P16=0

5.3.4. DIGITAL COMMUNICATION

P19: ---a Short (HART) address of the unit

FACTORY DEFAULT: 2 These addresses with 0 – 15 are, in accordance with the HART standard, for distinguishing units in the same loop.

- Address: 0 current output of 4...20 mA operational •
- Address: 1 15 current output is fixed to 4 mA.

5.3.5. MEASUREMENT OPTIMIZATION

P20: ---a Damping

This parameter can be used to reduce unwanted fluctuation of the display and output.

а	Damping (s)	No or moderate fume / waves	Heavy or dense fume or turbulent waves		
0	no filter	For test	ng only		
1	3	applicable	not recommended		
2	6	recommended	applicable		
3	10	recommended	recommended		
4	30	recommended	recommended		
5	60	recommended	recommended		

P22: ---a Dome top tank compensation

This parameter can be used to reduce disturbing effect of possible multiple echoes

а	Compensation	Remark
0	OFF	In case the EasyTREK is not mounted in the center of the top and the top is flat.
1	ON	In case the EasyTREK is mounted in the center of a tank with dome-shaped top

P24: ---a Target tracking speed

In this parameter evaluation can be speed up at the expense of the accuracy.

Remark Tracking speed а 0 Standard For most applications 1 Fast For fast changing level Only for special applications (measuring range is reduced to 50% of the nominal value) 2 Special The measuring window is inactive and the EasyTREK will respond practically instantly to any target.

FACTORY DEFAULT: 5

FACTORY DEFAULT: 0

FACTORY DEFAULT: 0

P25: - - - a Selection of Echo within the measuring window

FACTORY DEFAULT: 0

A so-called measuring window is formed around the echo signal. The position of this measuring window determines the flight time for calculation of the distance to the target. (the picture below can be seen on the test oscilloscope)

Some applications involve multiple (target + disturbing) echoes even within the measuring window. Basic echo selection will be done by the Quest + software automatically. This parameter influences the echo selection only within the measuring window.

а	Echo in the window to be selected	Remark		
0	With the highest amplitude	Most frequently used		
1	First one	For liquids applications with multiple echoes within the Measuring Window		

P26:	Level elevation rate (filling speed) (m/h or ft/h)	FACTORY DEFAULT: 2000
P27:	Level descent rate (emptying speed) (m/h or ft/h)	FACTORY DEFAULT: 2000
	Those parameters provide additional protection against each loss in	applications involving very beaut fuming. Correct setting increases reliability of

These parameters provide additional protection against echo loss in applications involving very heavy fuming. Correct setting increases reliability of the measurement during filling and emptying. The parameters must not be smaller than the fastest possible filling/emptying rate of the actual technology.

Attention! Level changing rate is rather different near to the conical or spherical bottom of such a vessel.

P28 --- a Echo loss indication

FACTORY DEFAULT: 0

а	Echo loss indication	Remark			
		During short echo-loss (for the period of twice the time set in P20) analogue output will hold last value. After this period the current value according to the setting in P12 and via HART ERROR CODE 2 will be transmitted.			
		HART Holding value Error Code 2			
0	Delayed indication	Echo loss 2 * "P20" time Current 22mA P12 = 2			
		Current output Holding value Holding last value P12 = 0			
		Current 3,8mA P12 = 1			
1	No indication	For the time of echo-loss, analogue output will hold last value.			
2	Filling simulation	Loosing echo during the filling process, transmitted value will increase according to the filling speed set in P26			
3	Immediate indication	Loosing echo, the current value (according to the setting in P12) and the ERROR CODE 2 (via HART) will immediately be transmitted.			
4	Empty tank indication	Echo-loss may occur in completely empty tanks with a spherical bottom due to deflection of the ultrasonic beam, or in case of silos with an open outlet. In such cases it may be useful to indicate empty tank instead of echo loss.			

P29 ---- Blocking out of disturbing object

spa380en2112p 27 / 48

One fixed object in the tank, disturbing the measurement, can be blocked out. By the use of the Echo Map (P70) the precise distance of disturbing object can be read out. This value should be entered in this parameter.

P31: ---- Sound velocity at 20 °C (m/s or ft/s depending on P00(c)

This parameter should be used if the sound velocity in the gases above the measured surface differs largely from that of in the air. This is recommended for applications where the gas is more or less homogeneous. If it is not, the accuracy of the measurement can be improved using 32-point linearization (P48, P49).

For sound velocities in various gases see section "Sound Velocities".

P32: ---- Specific gravity

Entering a value (other than "0") of specific gravity in this parameter, the weight will be displayed instead of VOL.

Engineering unit should be [kg/dm³] or [lb/ft³] depending on P00 (c)

FACTORY DEFAULT: 343,8 (m/s), 1128 (ft/s)

FACTORY DEFAULT: 0

FACTORY DEFAULT: 0

5.3.6. DATA LOGGER

The logger of the device can store 12288 events. The registry is in a non-volatile (FLASH) memory, so the registry will retain its contents even in case of a power failure. The on-board clock of the device is protected against short power-outs, and keeps working for at least 15 days after the device is switched off. The battery protecting the clock needs at least two hours to be recharged.

The logger operates in two basic ways.

Linear logging, whereby an entry is logged after every time period configured in P35.

Event-controlled logging, whereby an entry is logged after an internal event occurs or condition is fulfilled.

The capacity of the registry allows the following logging times in linear logging mode:

P35 [min]	Time of logging	Note
0	35 hrs.	depends on device type and measurement cycle time
1	78 days	
5	40 days	
10	80 days	
60	500 days (16 months)	

Content of a log:

- entry time (with an accuracy of 1 minute)
- primary measured value (P01)
- level and distance values
- sensor temperature
- output current
- error and status variables

The registry can be erased in parameter P79. See: P79.

P34: - cba Logging mode

а	Operating mode	Parameters to be programmed
0	No logging	
1	Linear logging	P35 interval (minute)
2	Event-controlled logging when the primary value changes	P35 absolute value of variation
3	Event-controlled logging when the primary value changes	P35 variation in %
4	Event-controlled logging when the primary value gets out of range	P35, P36 – absolute values of range limits

b	Logging of errors and warnings (a > 0)
0	No logging
1	Logging of all errors and warnings
2	Logging of errors only
3	Logging of NoEcho only

C	Logging of changes in status (a > 0)
0	No logging
1	Logging of change in status

FACTORY SETTING: 000 (no logging)

Errors that may generate an entry if P34/b<>0: NOECHO, ERR12, ERR13, ERR14, ERR15, ERR16, SUB0, ERR4, ERR5, PT ERR (temperature measurement error).

P34a	Operating mode		Function of P35 and P36
0	No logging		
1	Linear logging	P35 = 0	One entry after every measurement cycle.
		P35 <> 0	Logging interval (minutes)
		P36	Value is indifferent
2	Event-controlled logging when the primary	P35	Absolute value of the change in the primary measured value (according to
	value changes		P01a)
			P35 is defined as the dimension of the primary measured unit.
			Log entry occurs if the value of the primary measured value deviates from the
			measured value of the previous cycle in any direction by the amount
			specified in P35.
		P36	Value is indifferent
3	Event-controlled logging when the primary	P35	Relative (%) value of primary measured value (according to P01a) variation.
	value changes		P35 is a relative quantity so its dimension is percent.
			Log entry occurs if the value of the primary measured value deviates from the
			measured value of the previous cycle in any direction by the amount
			specified in P35.
		P36	Value is indifferent
4	Event-controlled logging when the primary	P35, P36	Absolute values of the limits of the range of the primary measured values
	value gets out of range in any direction		(according to P01a). P35 and P36 have the same dimension as the
			primary measured value.
			Log entry occurs if the value of the primary measured value steps
			over the limit given in P35 and P36, in any direction.
			To monitor only one limit value, set it in P35 and
			let P36 be 0.

FACTORY SETTING: P35 = 0, P36 = 0

P37: yyyy Real-time clock, year

Year setting for date of the on-board clock. (2005)

P38: mmdd Real-time clock, month and day

Month (mm) and day (dd) setting for date of the on-board clock.

P39: HHMM Real-time clock, hour and minute

Hour (HH) and minute (MM) setting of the on-board clock.

5.3.6.1 READING DATA OUT FROM THE LOGGER

Reading the logger is only possible with digital communication. For this purpose, the built-in IrDA communication port can be used. The content of the log can also be read out via HART communication, but because of the slow speed of HART, it takes several hours. To access the data content use of NIVELCO's DataScope program is recommended. During this <u>high-speed communication</u> the device sets the output current to 22 mA. There is no measurement while retrieving data from the register, so measurement values are not updated.

Connecting to a PC using an IrDA adapter:

The IrDA adapter and the IrDA port of the device must be placed within a 5...10 cm distance and facing each other!

(only IrDA to RS232 adapters can be used)*

RedSnake:
 ActiSys:

- Esis:

IL-200 ACT-IR200S ACT-IR220L+ ACT-IR220LR M8421

* Recommended RS232-USB adapters for using the USB port: STLab: USB-RS232

MOXA: NPort-U1110, UPort 1110

After connecting the adapters start DataScope program. The program and the User's Manual can be found on the website of NIVELCO.

5.3.7. VOLUME (CONTENT) MEASUREMENT

32 / 48 spa380en2112p

5.3.8. OPEN CHANNEL FLOW MEASUREMENT

P40: --b a Devices, formula, data

FACTORY DEFAULT: 00

ba			Devices, for	rmula, data			Programmable parameters
		Туре	Formula	Qmin [l/s]	Qmax [l/s]	"P" [cm]	
00	s	GPA-1P1	Q [l/s]= 60.87*h ^{1.552}	0.26	5.38	30	P46
01	NIVELCO Parshall channels	GPA-1P2	Q [l/s]= 119.7*h ^{1.553}	0.52	13.3	34	P46
02	che	GPA-1P3	Q [l/s]= 178.4*h ^{1.555}	0.78	49	39	P46
03	hall	GPA-1P4	Q [l/s]= 353.9*h ^{1.558}	1.52	164	53	P46
04	Pars	GPA-1P5	Q [l/s]= 521.4*h ^{1.558}	2.25	360	75	P46
05	- 0 0	GPA-1P6	Q [l/s]= 674.6*h ^{1.556}	2.91	570	120	P46
06	Ē	GPA-1P7	Q [l/s]= 1014.9*h ^{1.556}	4.4	890	130	P46
07	ź	GPA-1P8	Q [l/s]= 1368*h ^{1.5638}	5.8	1208	135	P46
08	1	GPA-1P9	Q [l/s]= 2080.5*h ^{1.5689}	8.7	1850	150	P46
09			General PAR	SHALL flume			P46, P42
10		PALMER-BOWLUS (D/2) P46, P41				P46, P41	
11		PALMER-BOWLUS (D/3) P46, P41					
12		PALMER-BOWLUS (Rectangular) P46, P41, P42					
13		Khafagi Venturi P46, P42					
14			Bottom-s	tep weir			P46, P42
15			Suppressed rectang	gular or BAZIN we	eir		P46, P41, P42
16			Trapezoi	idal weir			P46, P41, P42
17		Special trapezoidal (4:1) weir P46, P42					P46, P42
18		V-notch weir P46, P42					
19		THOMSON (90°-notch) weir P46					
20		Circular weir P46, P41					
21			General flow formula: Q[l/	s] = 1000* P41 *h ^p	⁴² , h [m]		P46, P41, P42

P41-45: Flume/weir dimensions

P40=00	NIVELCO Parshall flumes (GPA1P1 GPA-1P9) For further details see the Manual of the Parshall flume	EasyTREK 98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P40=09	General Parshall flume $0.305 < P42$ (width) <2.44 $Q [1/s] = 372 \times P42 \times (h / 0.305)^{1.569 \times P42^{0.006}}$ $2.5 < P42$ $Q [1/s] = K*P42*h^{1.6}$ $P = 2/3*A$ $P = 2/3*A$	EasyTREK P42 EasyTREK P46

P40= 10	Palmer-Bowlus (D/2) flume Q [m³/s] = f(h1/P41)∗P41 ^{2.5} , where h1[m] = h+(P41/10) P41 [m]	P04 P41 D/2 D/10
P40= 11	Palmer-Bowlus (D/3) flume Q [m ³ /s] = f(h1/P41)∗P41 ^{2.5} , where h1[m] = h+(P41/10) P41 [m]	P04 P41 D/3 D/10 D/10
P40= 12	Palmer-Bowlus (rectangular) flume Q [m ³ /s] = C *P42* h ^{1.5} , where C = f(P41/P42) P41 [m], P42 [m]	P41 P41 D/10

P40= 13	Khafagi Venturi flume Q [m³/s] = 1.744 •P42 • h ^{1.5} + 0.091 • h ^{2.5} P42 [m] h [m]	EasyTREK P42 EasyTREK
P40= 14	Bottom step weir 0.0005 < Q [m ³ /s] < 1 0.3 < P42 [m] < 15 0.1 < h [m] < 10 Q [m ³ /s]= 5.073 • P42 • h ^{1.5} Accuracy: ±10%	P42 P42
P40= 15	Suppressed rectangular or BAZIN weir 0.001 < Q [m³/s] < 5	P42 97d h h h h h
P40= 16	Trapezoidal weir $0.0032 < Q [m^3/s] < 82$ $20 < P41[^\circ] < 100$ 0.5 < P42 [m] < 15 0.1 < h [m] < 2 $Q [m^3/s] = 1.772 \cdot P42 \cdot h^{1.5} + 1.320 \cdot tg(P41/2) \cdot h^{2.47}$ Accuracy: $\pm 5\%$	987 h HOA
---------	---	-------------------------
P40= 17	Special trapezoidal (4:1) weir $0.0018 < Q [m^3/s] < 50$ 0.3 < P42 [m] < 10 0.1 < h [m] < 2 $Q [m^3/s] = 1.866 \cdot P42 \cdot h^{1.5}$ Accuracy: $\pm 3\%$	90 h h P42 P41
P40= 18	V-notch weir $0.0002 < Q [m^3/s] < 1$ $20 < P42[^{\circ}] < 100$ 0.05 < h [m] < 1 $Q[m^3/s] = 1.320 \cdot tg(P42/2) \cdot h^{2.47}$ Accuracy: $\pm 3\%$	Ba P42

P40= 19	THOMSON (90°-notch) weir $0.0002 < Q [m^3/s] < 1$ 0.05 < h [m] < 1 $Q[m^3/s] = 1.320 \cdot h^{2.47}$ Accuracy: $\pm 3\%$	Brand
P40= 20	Circular weir 0.0003 < Q [m³/s] < 25 0.02 < h [m] < 2 Q[m³/s] = m∗b • D ^{2.5} . where b = f (h/D) m= 0.555+0.041 • h/P41+(P41/(0.11 • h)) Accuracy: ±5%	Pot Pot Patient
P46:	Distance at Q=0	FACTORY DEFAULT: 0

Distance between sensor surface and the level at which flow starts has to be entered in this parameter.

5.3.9. 32-POINT LINEARIZATION

P47: --- a Linearization

FACTORY DEFAULT: 0

Linearization is the method of assigning requested (calibrated or calculated) level, volume or flow to values measured by the transmitter.

It can be used for instance if the sound velocity is not known (LEVEL \Rightarrow LEVEL) or in the case of tank with other shape than under 6.4 or open channel other than under 6.5 (LEVEL \Rightarrow VOLUME or LEVEL \Rightarrow FLOW).

а	Linearization
0	OFF (FACTORY DEFAULT)
1	ON

Conditions of correct programming of the data pairs

The table must always start with: L(1) = 0 and r(1) = value (assigned to 0 level)

The table must be ended either with the 32^{nd} data pair i.e. j = 32 or if the linearization table contains less than 32 data-pairs j<32, it must be ended with a level value "0" e.g. L(j < 32) = 0.

The EchoTREK will ignore data after recognizing level value "0" with serial number other than "1".

If the above conditions are not met, error codes will be displayed (see chapter: Error Codes).

i	L (Left column) Level values measured	r (Right column) Value assigned to transmit
1	0	r(1)
2	L(2)	r(2)
	L(i)	r(i)
nn	L(nn)	r(nn)
nn+1	0	
32		

P48: Number of linearization data pairs

Number of linearization data pairs entered in the table.

5.3.10. INFORMATIONAL PARAMETERS	(READ OUT PARAMETERS)
---	-----------------------

P60:	Overall operating hours of the unit (h)							
P61:	Time elapsed after last switch-on (h)							
P62:	Operating hours of the relay (h)							
P63:	Number of switching cycles of the relay							
P64:	Actual temperature of the transducer (°C	/ °F)						
	Broken loop of the thermometer will be indic will perform temperature correction correspo		iated by a signal sent via HART. In this case the transmitter					
P65:	Maximum temperature of the transducer (°C / °F)						
P66:	Minimum temperature of the transducer (°C / °F)						
P70:	Number of Echoes / Echo Map							
	Amplitude and position of the echoes can als	so be read out.						
P71:	Distance of the of Measuring Window							
P72	Amplitude of the selected echo [dB] <0							
P73:	Position of the selected echo (time) :(ms)	[ms]						
P74:	Signal To Noise Ratio							
	Ratio	Measurement conditions						
	Over 70	Excellent						
	Between 70 and 30	Good						
	Under 30	Unreliable						
D75.	Pleaking Distance							

P75: ---- Blocking Distance

The actual close-end blocking distance will be displayed (provided automatic blocking was selected in P05).

5.3.11. ADDITIONAL PARAMETERS OF THE FLOW METERING

P76: ---- Head of flow (LEV) (Read only parameter)

The Headwater value can be checked here. This is the "h" value in the formula for flow calculation.

P77: ---- TOT1 volume flow totalized (resettable)

P78: ---- TOT2 volume flow totalized (non-resettable)

5.3.12. SUPPLEMENTARY PARAMETER OF THE LOGGER

P79: Free space of logger in percent

If the value is 0, the registry has overflown and every new entry will overwrite the oldest one.

Clearing the logger

- 1). Enter parameter P79.
- 2). Press € + € keys.
- 3). The display flashes "Lo-Clr" message.
- 4). Pressing \bigcirc will clear the logger.

5.3.13. OTHER PARAMETERS

P96:	Software code 1 (Read only parameter)
P97:	Software code 2 (Read only parameter)
P98:	Hardware code (Read only parameter)
P99: dcba	Access lock by secret code

The purpose of this feature is to provide protection against accidental programming or intentional reprogramming of parameters by a person not entitled to do so. The secret code can be any value other than **0000**. Setting a secret code will automatically be activated when the **EasyTREK** is returned to the Measurement Mode. In order to program locked device, the secret code should be entered first in **P99**. Thus, for entering a new code or erasing the old one the knowledge of the previous code is necessary.

6. MAINTENANCE. REPAIR, AND STORAGE CONDITIONS

The device does not require regular maintenance. The warranty card contains the terms and conditions. Before returning the device for repairs, it must be cleaned thoroughly. The parts in contact with the medium may contain harmful substances; therefore, they must be decontaminated. Our official form (<u>Returned Equipment Handling Form</u>) must be filled and enclosed in the parcel. Download it from our website <u>www.nivelco.com</u>. The device must be sent back with a declaration of decontamination. A statement must be provided in the declaration that the decontamination process was successfully completed and that the device is clean from any hazardous substances.

Unused devices must be stored within the ambient temperature range specified in the technical data, with a maximum of 98% relative humidity.

6.1 SOFTWARE UPGRADE

Based on the observations & needs of our customers NIVELCO constantly improves and revises the operating software of the device. The software can be upgraded with the help of the IrDA communication port of the device. For more information about software updates please contact NIVELCO.

7. ERROR CODES

Error Code	Error description	Causes and solutions	
1	Memory error	Contact local agent	
No Echo	Echo loss	See Action 5 and 6	
3	Hardware error	Contact local agent	
4	Display overflow	Check settings	
5	Sensor error or improper installation/mounting, level in the dead band	Verify sensor for correct operation and check for correct mounting according to the User's Manual	
6	The measurement is at the reliability threshold	Better location should be found.	
7	No signal received within the measuring range specified in P04 and P05	d Check programming, also look for installation mistake	
12	Linearization table error: both L(1) and L(2) are zero (no valid data-pairs)	See "Linearization" Section	
13	Linearization table error: same L(i) data is given twice in the table	See "Linearization" Section	
14	Linearization table error: the r(i) values are not monotone increasing	See" Linearization" Section"	
15	Linearization table error: measured Level is higher than the last Volume or Flow data-pair	See" Linearization" Section"	
16	The check sum of the program is wrong	Contact local agent	
17	Parameter consistency failure	Check programming	
18	Hardware failure	Contact local agent	

8. PARAMETER TABLE

Par.	Page	Description		Value	e	Par.	Page	Description		Va	lue	
			d	c b	a				d	C	b	а
P00	16	Application/Engineering Units				P28	24	Echo loss indication				٦.
P01	17	Measurement Mode				P29	25	Blocking out a disturbing object				
P02	19	Calculation units				P30		-				
P03		-				P31	25	Sound velocity values in different gases				
P04	19	Maximum Measuring Distance				P32	25	Specific gravity				
P05	20	Minimum Measuring Distance				P33		-				
P06	21	Far End Blocking				P34	27	Logging mode				
P07		-				P35	28	Log value 1 and log value 2				
P08	20	Fixed current output				P36	28	Log value 1 and log value 2				
P09		-				P37	29	Real-time clock, year				
P10	22	Transmitted value assigned to "4 mA"				P38	29	Real-time clock, month and day				
P11	22	Transmitted value assigned to "20 mA"				P39	29	Real-time clock, hour and minute				
P12	22	"Error" indication by the current output				P40	30	Selection of tank shape/ open channel				
P13	21	Relay function				P41	30	Dimensions of tank / Open Channel				
P14	21	Relay parameter – Operating value				P42	30	Dimensions of tank / Open Channel				
P15	21	Relay parameter – Releasing value				P43	30	Dimensions of tank / Open Channel				
P16	21	Relay parameter – Pulse rate				P44	30	Dimensions of tank / Open Channel				
P17		-				P45	30	Dimensions of tank / Open Channel				
P18		-				P46	36	Level pertaining to flow Q = 0				
P19	22	Short address of the unit				P47	37	Linearization				
P20	22	Damping				P48	37	Linearization table				
P21		-				P49		-				
P22	22	Dome top tank compensation				P50		-				
P23		-				P51		-				
P24	22	Target tracking speed				P52		-				
P25	23	Selection of Echo in the measuring window				P53		-				
P26	23	Level elevation rate				P54		-				
P27	23	Level descent rate				P55		-				

Par.	Page	Description	Value	Par.	Page	Description		Val	ue	
			dcba				d	C	b	а
P56		-		P78	39	TOT2 volume flow totalized				
P57		-		P79	39	Free space of the logger in percent				
P58		-		P80		-				
P59		-		P81		-				
P60	38	Overall operating hours of the unit		P82		-				
P61	38	Time elapsed after last switch-on		P83		-				
P62	38	Operating hours of the relay		P84		-				
P63	38	Number of switching cycles of the relay		P85		-				
P64	38	Actual temperature of the transducer		P86		-				
P65	38	Maximum temperature of the transducer		P87		-				
P66	38	Minimum temperature of the transducer		P88		-				
P67		-		P89		-				
P68		-		P90		-				
P69		-		P91		-				
P70	38	Echo Map		P92		-				
P71	38	Position of the measuring window		P93		-				
P72	38	Amplitude of the selected echo		P94		-				
P73	38	Position of the selected echo		P95		-				
P74	38	Signal / noise ratio		P96	39	Software code 1				
P75	38	Blocking distance value		P97	39	Software code 2				
P76	39	Water head of the flow		P98	39	Hardware code				
P77	39	TOT1 volume flow totalized		P99	39	Access lock by secret code				

9. SOUND VELOCITY VALUES IN DIFFERENT GASES

The following table contains the sound velocity values of various gases measured at +20 °C (+68 °F).

Gases	Formula	Sound Velocity (m/s)
Acetaldehyde	C ₂ H ₄ O	252.8
Acetylene	C_2H_2	340.8
Ammonia	NH ₃	429.9
Argon	Ar	319.1
Benzene	C ₆ H ₆	183.4
Carbon dioxide	CO ₂	268.3
Carbon monoxide	CO	349.2
Carbon tetrachloride	CCl ₄	150.2
Chlorine	Cl ₂	212.7
Dimethyl ether	CH ₃ OCH ₃	213.4
Ethane	C ₂ H ₆	327.4
Sulphur hexafluoride	SF ₆	137.8

Gases	Formula	Sound Velocity (m/s)
Ethanol	C ₂ H ₃ OH	267.3
Ethylene	C_2H_4	329.4
Helium	He	994.5
Hydrogen sulfide	H ₂ S	321.1
Methane	CH ₄	445.5
Methanol	CH ₃ OH	347
Neon	Ne	449.6
Nitrogen	N ₂	349.1
Nitrogen monoxide	NO	346
Oxygen	0 ₂	328.6
Propane	C ₃ H ₈	246.5

spa380en2112p 🔶 47 / 48

spa380en2112p August 2021 NIVELCO reserves the right to change technical specifications without notice.