Ш > | |

PiloTREK

WE–200 2-wire compact 80 GHz non-contact radar level transmitters

User's and programming manual 1st edition

Manufacturer: **NIVELCO Process Control Co.** H–1043 Budapest, Dugonics u. 11. Tel.: + 36-1-889-0100 E-mail: sales@nivelco.com www.nivelco.com

BASIC CONCEPTS AND ELEMENTS

TABLE OF CONTENTS

1.INTRODUCTION	5
2.ORDER CODE	6
3.TECHNICAL DATA	7
3.1.General	7
3.2.Type-Specific Data	8
3.3.Linearity error	8
3.4.Dimensions	9
3.5.Accessories	10
3.6.Conditions for safe operation	10
3.7.Maintenance, repair, and storage conditions	
3.8.Firmware update	11
4.INTEGRATION INTO THE TECHNOLOGICAL PROCESS	11
4.1.Level measurement applications	11
4.2.Flow measurement applications	13
4.3.Wiring	13
4.4.Available user interfaces	
4.5.Bluetooth® communication	15
4.6.BUS (HART®) communication	16
4.7.Commissioning and setting up	16
5.PROGRAMMING	
5.1.Configuring the measurement	
5.2.Current loop output	
5.3.Relay output (optional)	27
5.4.Digital communication	30
5.5.Measurement optimization	30
5.6.Volume measurement	35

5.7.Open-channel flow measurement	37
5.8.Output Conversion Table – OCT programming	44
5.9. Service diagnostic parameters (read only)	45
5.10.Flow measurement control parameters (read only)	46
5.11.Output control parameters (read only)	46
5.12.Hardware / Software versions (read only)	46
6.TROUBLESHOOTING	47
6.1.Status and error indication in HART® communication	47
6.2. Typical application errors	50
7.EView2 INSTRUCTIONS	50
7.1.Device Status Window	50
7.2.Echo Diagram (oscilloscope function)	51
7.3.Threshold settings	51
7.4.Threshold mask	53
7.5. The output conversion table (OCT) – (EView2 OC-Table)	54
7.6. Programming example 1 - configuring level measurement (using EView2)	56
7.7.Programming example 2 – configuring the current loop output (using EView2)	57
8.PROGRAMMING WITH SAP-300 DISPLAY UNIT	58
8.1.SAP-300 display unit	58
8.2. The PiloTREK during programming	58
8.3.Manual programming	59
9.PARAMETER LIST	61

wes200en23p01 4/64

1. INTRODUCTION

Application

The new PiloTREK WE–200 family of non-contact compact radar level transmitters uses the most advanced, next-generation measurement technology in industrial metrology, 80 GHz FMCW radar technology. The most fundamental advantages of 80 GHz radars over lower frequency radars (5...12 GHz, and 25 GHz) are the smaller antenna, better focusability, and smaller beam cone angle.

It uses the latest technology for measuring liquids, masses, emulsions, and other chemicals widely used in, for example, the water industry, food industry, energy industry, pharmaceutical industry, and chemical industry, which provides measurement results with millimeter accuracy.

It is also ideal for measuring substances susceptible to vapor formation and liquids with gas blankets. As no medium is required for millimeter wave propagation, it can also be used in a vacuum.

The instrument is HART[®] compatible and can be operated with NIVELCO EView2, PACT*ware*, MultiCONT universal process controller, or via Bluetooth[®] with MobileEView app.

Operating principle

The PiloTREK WE–200 is a continuous wave frequency modulated radar (FMCW) operating in the 80 GHz frequency band (W-band). Part of the energy of the frequency-modulated wave emitted by the transmitter's antenna is reflected from the measured surface, depending on the properties of the measured material. The distance to the reflecting surface is calculated with high accuracy by the electronics from the frequency shift of the reflected signal proportional to the propagation time and converted into a signal proportional to distance, level, or volume. The propagation velocity of the millimeter-wave signal in the air, gases, and vacuum is nearly constant regardless of temperature and pressure, so these factors do not significantly affect the accuracy of the measurement.

The signal strength of the reflected millimeter waves depends largely on the measured medium's relative dielectric constant (ε_r); therefore, the maximum measurement distance that can be achieved in practice may be reduced. A larger diameter antenna with a higher gain is recommended for measuring low dielectric constant media.

2. ORDER CODE (NOT ALL COMBINATIONS ARE AVAILABLE)

(1) Up to 20 m (66 ft) measuring range.

(2) Only for 10 m (33 ft) measuring range.

(3) For 10 and 20 m (66 ft) measuring range.

(4) Only for 30 m (98.5 ft) measuring range, and encapsulated variants.

(9) 10 m (33 ft), 20 m (66 ft) types with 1½" antenna (from DN40), 30 m (98.5 ft) types with Ø75 mm (2½") antenna (from DN80).

Available accessories	Order code	
Display unit	SAP-300-0	
HART [®] –USB modem	SAT-304-0	
HART [®] –USB/Bluetooth [®] modem	SAT-504-	
HART [®] –USB/RS485 modem	SAK-305-2	
HART [®] –USB/RS485 modem / Ex ia G	SAK-305-6	
Process connections (6)		
DIN and ANSI flanges	MFT-000-0	
DN40 Milch connection (DIN 11851)		
Seals (6)		
EPDM		
FFKM		

(6) The requirement for the above-mentioned technological connections and seals must be specified in the order.

3. TECHNICAL DATA

3.1. General

		With plastic housing WDP/M/V/F-2DD-D	With aluminum housing WDS/B-2DD-D	With stainless steel housing ₩□K−2□□−□	
Measured a	nd derived values	Measured va	Measured value: distance; derived values: level, volume, weight, flow		
Signal frequ	ency		7781 GHz (W-band)		
Electronics I	nousing	Plastic (PBT)	Painted cast aluminum	1.4571 (316Ti) stainless steel	
Process terr	nperature	_40…+100 °C (−4	40+212 °F), PP encapsulation: -30+80 °	°C (–22…+176 °F)	
Ambient terr	nperature	–40…+70 °C (–	40+158 °F); with display unit: -20+70 °C	C (-4+158 °F)	
Measuring fi	requency		~ 1/s		
Resolution			0.1 mm		
Process pre	ssure		Depends on type, see table (3.2)		
Supply volta	ge		1236 V DC		
	Analog	420	420 mA; (3.920.5 mA); R _{Lmax} = (U _S – 12 V) / 0.02 A		
Output	Digital	Н	HART [®] interface, HART [®] loop resistor $\ge 250 \ \Omega$		
Output	Relay (optional)	With char	With changeover switch (SPDT) 30 V / 1 A DC; 42 V / 0.5 A AC		
	Display		SAP-300 LCD dot matrix		
Seal		FPM (Viton [®]) (o	optionally: EPDM, FFKM Perfluoroelastomer	(Kalrez [®] 6375))	
Electrical pro	otection	C	Class I overvoltage protection; (Class III [SELV])		
Ingress prot	ection	IP67			
Electrical co	nnection	2× M20×1.5 cable gland, cable diameter: Ø612 mm (Ø.24 Ø.47") (metal in the case of Ex variants, otherwise it is plastic) + inner thread 2× ½" NPT for protective tubing; Usable wire gauge: 0.51.5 mm ² (AWG20AWG15) (shielded cable is recommended			
Weight		Plastic: 11.6 kg (2.23.5 lb) Plastic: 11.6 kg (2.23.5 lb) Plastic: 11.6 kg (2.23.5 lb)			

3.2. Type-Specific Data

Antenna type	ENC	ENCAPSULATED ANTENNA (WDP, WDV, WDF)				NTENNA (WDS, WD	⊐М, ₩□К)	
Antenna size	Ø1" WDD-212-D WDD-213-D	WDD	51½" -2□4-□ -2□5-□	Ø75 мм ₩□□-238-□	Ø1" WDD-212-D WDD-213-D	WDD-	1½" -2□4–□ -2□5–□	
Antenna material	PP, PVDF, PTFE			PP/PVDF	1.4571 (3	1.4571 (316Ti) stainless steel		
Dead zone (7)				0 m (0 ft)	0 m (0 ft)			
Max. measuring distance (8)	10 m (33 ft)	10 m (33 ft)	20 m (66 ft)	30 m (98.5 ft)	10 m (33 ft)	10 m (33 ft)	20 m (66 ft)	
Accuracy ⁽⁹⁾	±5 mm (±0.2")	±5 mm (±0.2")	±2 mm (±0.079")	±2 mm (±0.079")	±5 mm (±0.2")	±5 mm (±0.2")	±2 mm (±0.079")	
Antenna insertion length (10)	56 mm (2.2")	nm (2.2") 70 mm (2.76")		115 mm (4.53")	69 mm (2.72)	80 mm	า (3.15")	
Process pressure	-13 bar (-14.543.5 psi)				–125 ba	ır (–14.5…362.6 ps	i)	
Beam angle (-3 dB)	12°	7°		4°	12°	-	7°	
Process connection	1" BSP / NPT	11/2" BSP / NPT		flange	1" BSP / NPT	1½" BS	SP / NPT	

⁽⁷⁾ From the tip of the antenna, if dielectric constant (ε_r) < 80.

⁽⁸⁾ May be limited for media with low dielectric constants or non-vertical or non-planar surfaces.

(9) With an ideal reflecting surface, according to IEC 62828-1, an accuracy of ±2 mm (±0.079") is not guaranteed for Region 3 and Region 4 settings. (10) From process connection.

3.3. Linearity error

3.4. Dimensions

3.5. Accessories

- Warranty card
- User and programming manual
- EU Declaration of Conformity

3.6. Conditions for safe operation

Compliance with technological process conditions

- If the device is installed in a place subject to overvoltage, the device must be protected with at least class II surge protection!
- The device must be connected to the earth of the EP network via its earth screw.

The cable outside of the device must be secured and unencumbered!

The device operated from a power supply complying with Class 2 surge protection (SELV/PELV).

Compliance with local rules and regulations

The PiloTREK WE–200 is a Local Positioning Radar (LPR) and must be mounted in a fixed, antenna-down position. In addition, the following two restrictions on antenna placement and height from the ground must be observed:

• a separation distance of 4 km (2.48 miles) from radio astronomy sites operating in the frequency band 75...85 GHz, unless specifically authorized by the ruling national regulatory authority.

Two M20×1.5 cable glands

SAP-300 display unit (if ordered)

Flat seal (if applicable)

 At a distance of between 4 and 40 km (2.48 and 24.8 miles) from any radio astronomy site, the height of the radar above ground level must not exceed 15 m (49.2 ft).

3.7. Maintenance, repair, and storage conditions

PiloTREK WE-200 devices do not require regular maintenance. There may be occasions when the sensor head has to be cleaned of deposits. Cleaning must be done carefully without scratching or indenting the radiating surface.

All repairs, whether in-warranty or out-of-warranty must only be done by NIVELCO.

The device must be cleaned before it is returned for repair, all chemicals must be neutralized, and the device must be disinfected! In addition, the device must be accompanied by a form (<u>DEVICE-RETURNING FORM</u>, B0407/C) which can be downloaded from our website. In it, the person returning the device declares that the device is free from all contamination and hazardous substances.

When not in use, the device must be stored within the ambient temperature specified in the technical data and at a maximum humidity of 98%.

3.8. Firmware update

The device's firmware is continuously maintained, considering user feedback and needs. If you want to update the firmware, use the built-in update communication port to upgrade to the latest version. To update, you need the NiFlash Light program; contact your distributor! In addition, the SAT–506–0 eLink communication adapter is required to upgrade the firmware.

4. INTEGRATION INTO THE TECHNOLOGICAL PROCESS

4.1. Level measurement applications

POSITIONING

The optimal location for PiloTREK (for a cylindrical tank) is at radius r = (0.3...0.5) R. It is always advisable to consider the radiation cone angle. The liquid surface must be perpendicular to the axis of the device.

Under no circumstances place the device near the inlet opening! Improper placement may lead to malfunctions.

In the case of enclosed antenna designs, the possibility of antenna front surface humidity should be minimized.

OBSTACLES

It is essential to avoid objects (pipes, ladders, structural elements, thermometers, etc.) entering the radiation cone.

!

CAUTION! If necessary, programming can block up to 4 interfering echoes in the PiloTREK WE-200 threshold settings by programming!

ALIGNMENT

The plane of the process connection must be parallel to the measured surface within $\pm 2...3^{\circ}$.

GASES / STEAM EMPTY TANK In a closed (especially outdoors, exposed to direct sunlight) tank, Especially in the case of tanks with convex or conical vapors/gases above the liquid may reduce the millimeter-wave bottoms or tanks with equipment (e.g., heating element, signal transmission. mixing paddle) at the bottom, the device may indicate an incorrect level when draining completely. It is because the tank bottom or objects at the bottom of the tank scatter or reflect the millimeter waves emitted to a certain extent, or the lower signal level of the scattered radiation interferes with itself in the tank. At least 100 mm (3.9") of liquid must cover these interfering devices or the convex or conical tank bottoms for a reliable measurement. FOAM TEMPERATURE The sensor must be Foam on the measured surface may prevent millimeter-wave level measurement. The sensor should be mounted in a protected from direct SUNSHADE position below which the formation of foam is the smallest. sunlight to avoid exceeding the highest permitted temperature.

4.2. Flow measurement applications

- The instrument can be used for open channel flow measurement with the flumes and weirs described in Chapter 5.7.
- The distance of the sensor from the surface must be adjusted, taking into account the maximum level to be measured and the proximity linearization error curve in Chapter 3.2.
- The sensor must be positioned on the longitudinal axis of the restricting element at a location determined by the characteristics of the restricting element. This point is marked on NIVELCO Parshall flumes.
- Foam may form on top of the flowing liquid which may affect the measurements. The liquid's surface must be exposed in front of the sensor to obtain a
 good echo.
- The sensor must be fixed so that it cannot move.
- The correct construction of the upstream and downstream sections of the measurement channel is of utmost importance for the accuracy of the measurement.
- The accuracy of volume flow measurement based on the level change also depends on the size and design of the restrictive element (channel or weir)
 used and the surface quality of the flowing liquid (ripple, foam). Therefore, flow measurement accuracy is necessarily lower than the accuracy achievable
 with level measurement.
- The sensor must be protected from direct sunlight by a cover to prevent the sensor from exceeding the maximum permitted temperature.

4.3. Wiring

Wiring in regular, non-hazardous environments

- 1. Remove the cover of the device housing.
- 2. Insert the cable through the cable gland into the terminal block.
- 3. Strip approximately 80 mm (3.15") of the insulation of the cable and remove approximately 4 mm of the insulation of the wires. Cut the shielding of the signal cable.
- 4. Connect to points 2 and 3 of the terminal block according to the marked polarity.
- 5. Pull the cable back with about 10 mm (0.4") of the cable insulation remaining in the cable gland. Tighten the socket locking nuts with two wrenches.
- 6. Arrange the wiring in the housing.
- 7. Put the cover back on.

The insulation test with a test voltage of 500 V AC is prohibited due to the internal electronic overvoltage protection!

Connecting (grounding) to an equipotential network (EPH)Electrostatic Discharge (ESD)Earthing connector (EP) on the side of the device housing,
maximum conductor cross-section: 4 mm² (AWG12).The device is protected against 4 kV ESD.The instrument housing must be earthed to a R < 1 Ω resistive
earth.The internal protection of the instrument
against ESD cannot protect the entire measuring
system against electrostatic discharge.
In all cases, it is the user's responsibility to ensure the
grounding of the tank and the measured material.

cables, as shielding does not protect against switching

Designing a measuring network in a non-explosive environment

	Power supply	
	Nominal voltage	24 V DC
PiloTREK U _s 2-wire transmitter	Maximum voltage (Uin):	36 V DC
	Minimum voltage (U _{in}):	Depends on the load impedance. (See diagram)
	Loop resistance, Rloop	RHART + Rcable + Rammeter
	Minimum R _A	0 Ω
HART [®]	Maximum R _A	750 Ω
	RHART resistance for HART® communication	250 Ω (recommended)

wes200en23p01 + 14/64

harmonics.

Line "A": minimum voltage at the input terminals of the device

Line "B": minimum supply voltage (voltage across the device and the 250 Ω loop resistor) Example for calculating the supply voltage:

The required minimum supply voltage at $I_{min} = 4 \text{ mA}$:

 $U_{supply min.} = U_{input min.} + (I_{min} * loop resistance) = 11.5 V + (4 mA * 0.25 k\Omega) = 12.5 V the required minimum supply voltage at I_{max} = 22 mA:$

 $U_{supply min.} = U_{input min.} + (I_{min} * loop resistance) = 11.5 V + (22 mA * 0.25 k\Omega) = 18.5 V$ Therefore, in the case of a loop resistance of 250 Ω , the 17 V supply voltage is just sufficient for the whole 4...20 mA in the measurement range.

4.4. Available user interfaces

The device can be programmed using the following tools:

ine deniee ean de pregrammed denig ale ien	
MultiCONT universal process controller	Ordered separately. Display
HART [®] USB modem (e.g. SAT–504)	Ordered separately. See Chapter 7 "EView2 user manual."
SAP–300 display unit	Ordered separately. See Chapter 8 "Programming with SAP-300 display unit"

4.5. Bluetooth® communication

Devices with HART[®] communication can be connected via Bluetooth[®] to a computer or smartphone in the case of PiloTREK WDD-2DD-B / -R types, or in other cases using the SAT-504-2 HART[®]-USB/Bluetooth[®] modem.

4.6. BUS (HART®) communication

The device can be used in two modes:

- Current loop and HART[®]
- Multidrop, HART[®] protocol

The EView2 software and the MultiCONT universal process controller support the both modes. In accordance with the Rosemount Standard, HART[®] communication can be used between the PiloTREK as a "slave" and the HART[®] master as a point-to-point connection.

4.7. Commissioning and setting up

NIVELCO supplies the PiloTREK 2-wire device with the specifications set by the customer, thus it is ready for operation immediately after installation and electrical connection. Measuring starts within 10 seconds from switching on.

Caution! The instrument starts with a current consumption of 3.5 mA after switching on! In this case, the instrument measures using the factory default settings. The factory default settings are suitable for checking functionality and simple measurement tasks but the device's full potential can only be used with the correct programming tailored to the requirements of the measured process. Therefore, to get to know the operational characteristics thoroughly and solve complex measuring tasks, it is necessary to read the chapters about programming.

5. PROGRAMMING

The HART interface of the PiloTREK WE-200 lets the user to access and program all device parameters. The parameter set can be accessed in three ways:

- SAP-300 plug-in display unit. See Chapter 8 for manual and menu map.
- EView2 software. See Chapter 7 for manual.
- NIVELCO MultiCONT multi-channel process controller. See MultiCONT User Manual.

These methods differ in many aspects. This programming guide only discusses the method involving EView2. For detailed information, refer to the descriptions of the particular access methods or the user manuals.

Some rarely used parameters cannot be set directly from the graphical interface. Instead, they can be changed referring to the parameter number at the following path.

EView2

Advanced mode \rightarrow Parameters

5.1. Configuring the measurement

P00: d c b a Unit system, default units, regional parameter

FACTORY DEFAULT: 0000

If parameter P00 is changed, the device reverts the entire parameter set to the factory default values of the new unit system. Therefore, all parameters must be set again!

a	Mode	
0	Normal	
1	High-sensitivity	

SAP-300	EView2	MultiCONT
BASIC SETUP \rightarrow APPLICATION	Application \rightarrow Operating mode	App. parameters \rightarrow P00 Application

b	Unit (by "c")			
	Metric (EU)	Imperial (US)		
0	m	ft		
1	cm	inch		
2	mm	inch		

SAP-300	EView2	MultiCONT
BASIC SETUP \rightarrow UNITS \rightarrow ENGINEERING UNITS	Application \rightarrow Engineering units	App. parameters \rightarrow P00 Application
\rightarrow DISTANCE UNITS		

С	Regio / Unit system	Regional parameter
0	EU / Metric	EU, United Kingdom, Albania, Andorra, Azerbaijan, Australia, Belarus, Bosnia and Herzegovina, Canada, Liechtenstein, Moldavia, Monaco, Montenegro, New Zealand, Northern Macedonia, Norway, San Marino, Saudi Arabia, Serbia, Switzerland, Turkey, Ukraine
1	US / Imperial	USA
2	Region 2 / Metric	Presil Janan Cauth Kanan Taiwan Thailand
3	Region 2 / Imperial	Brazil, Japan, South Korea, Taiwan, Thailand
4 ⁽¹¹⁾	Region 3 / Metric	India, Malaysia, South Africa
5 ⁽¹¹⁾	Region 4 / Metric	Russia, Kazakhstan

 $^{(11)}$ The accuracy of ± 2 mm is not guaranteed for Region 3 and Region 4 settings.

SAP-300	EView2	MultiCONT
BASIC SETUP \rightarrow UNITS	Application \rightarrow Calculation system	App. parameters \rightarrow P00 Application
\rightarrow ENGINEERING SYSTEM	$Application \rightarrow Calculation system$	App. parameters \rightarrow F00 Application

d	Temperature unit
0	٥C
1	°F

SAP-300	EView2	MultiCONT
	Measurement configuration \rightarrow Temperature	App. parameters \rightarrow P00 Application
\rightarrow TEMPERATURE UNITS		

P01: d c b a Output source

FACTORY DEFAULT: 1011

P01ba defines the source of the primary output value (HART – PV), which also defines the value transmitted on the analog current output. The device automatically selects the measurement mode according to the selected output source. The device measures the level's distance. The other quantities are calculated based on the specified tank parameters and material characteristics.

SV 'dc'	PV 'ba'	Output data / measuring mode	Parameters
10		Distance	-
11		Level	P04
12		Volume	P04, P4045
13		Weight	P04, P32, P4045
14 ⁽¹²⁾		Flow	P04, P4045, P46
15		Empty Volume	P04, P4045, P47
16		Level%	P04
17	,	Volume%	P04, P4045
40		TEMP	-
41		TOT1	-
42	2	TOT2	-

⁽¹²⁾ Cannot be selected in Volume (12, 17), Weight (13), and Empty Volume (15) measuring modes.

SAP-300	EView2	MultiCONT
MEASUREMENT CONFIGURATION		
\rightarrow PV. Mode	Measurement configuration \rightarrow Measurement mode	Parameters \rightarrow P01 Outp. funct.
\rightarrow SV. Mode		

Distance measurement (DIST) / Level measurement (LEV)

- **DIST**: Currently measured distance
- A: Shortest measurable distance (P05)
- H: Longest measurable distance, it is also the zerolevel distance (P04)

Volume measurement (VOL)

DIST: Currently measured distance

- A: Shortest measurable distance
- H: Zero-level distance
- B: Volume associated with the highest measurable level
- C: Tank's total volume

P02: d c b a Output units

FACTORY DEFAULT: 2021

The device calculates the volume, weight, and volume flow over a unit of time using a level-dependent (non-linear) function using **P40** or an output correction table (OCT). This parameter also determines the unit of measure for the "Output" column of the OCT table. The TOT value in flow measurement mode totalized (total) amount flowed. The distance, level, and temperature units can be selected in parameter P00.

а	Weigh	t unit
	Metric	US
0	kg	lb
1	ton	US ton
2	US ton	metric ton

SAP-300 ⁽¹³⁾	EView2	MultiCON	Т
BASIC SETUP → UNITS → ENGINEERING U	NITS Measurement configura	ation → Mass Units Parameter	$r_{S} \rightarrow P02$ Output. unit.
\rightarrow MASS UNITS			

⁽¹³⁾ Appears only if an output variable (PV, SV, TV, QV) is weight!

b	Volume			
	Metric	US		
	0	liter	gallon	
	1	hL	ft ³	⁽¹⁴⁾ Use is not recommended for flow measurement (in HART transmission i only be interpreted in conjunction with reading an application-specific code)
	2	m ³	barrel	
	3	million liter (14)	million gallon ⁽¹⁴⁾	Except for MGD.

SAP-300 ⁽¹⁵⁾	EView2	MultiCONT
BASIC SETUP \rightarrow UNITS \rightarrow ENGINEERING UNITS	Measurement configuration \rightarrow Volume Units	Parameters \rightarrow P02 Output. unit
\rightarrow VOLUME UNITS		

⁽¹⁵⁾ Appears only if PV, SV, TV, or QV is set to FLOW!

С	Time	
0	Second	
1	Minute	
2	Hour	
3	Day	

SAP-300 ⁽¹⁶⁾	EView2	MultiCONT
BASIC SETUP \rightarrow UNITS \rightarrow ENGINEERING UNITS	Measurement configuration \rightarrow Time Units	Parameters \rightarrow P02 Output. unit
\rightarrow TIME UNITS		

(16) Appears only if PV, SV, TV, or QV is set to FLOW!

	TC	DT	
u	Metric	US	
0	liter	gallon	
1	hL	ft ³	
2	m ³	barrel	
3	million liters (17)	million gallons ⁽¹⁷⁾	

⁽¹⁷⁾ Use is not recommended for flow measurement (in HART transmission it can only be interpreted in conjunction with reading an application-specific code). Except for MGD.

SAP-300 ⁽¹⁸⁾	EView2	MultiCONT
BASIC SETUP \rightarrow UNITS \rightarrow ENGINEERING UNITS	Measurement configuration \rightarrow TOT Units	Parameters \rightarrow P02 Output. unit
\rightarrow TOT UNITS		

⁽¹⁸⁾ Appears only if PV, SV, TV, or QV is set to FLOW!

P03: Maximum sensing distance

FACTORY DEFAULT: See X_{max} + 30 cm (1 ft).

The maximum sensing distance measured from the process connection. The device evaluates level signals only within the specified distance. The maximum sensing distance is type-specific. See the X_{max} column (+30 cm [+1 ft]) of the type-specific measurement distance table below. Smaller values can be set. The minimum value is parameter P05 + 30 cm (1 ft). It is not necessary to set this parameter. The device automatically selects the detection distance based on the zero-level distance specified in P04, within the limits of P03.

Type-specific measuring distance	Minimum X _{min} ⁽¹⁹⁾	Maximum X _{max}
WDD-212-D / WDD-213-D ⁽²⁰⁾	0.056 m (2.2")	10 m (33 ft)
WDD-214-D / WDD-215-D ⁽²⁰⁾	0.070 m (2.75")	10 m (33 ft)
WDD-224-D / WDD-225-D ⁽²⁰⁾	0.070 m (2.75")	20 m (66 ft)
WDD-212-D / WDD-213-D ⁽²¹⁾	0.069 m (2.7")	10 m (33 ft)
WDD-214-D / WDD-215-D ⁽²¹⁾	0.080 m (3.15")	10 m (33 ft)
WDD-224-D / WDD-225-D ⁽²¹⁾	0.080 m (3.15")	20 m (66 ft)
WDD-238-D ⁽²⁰⁾	0.115 m (4.53")	30 m (98.5 ft)

⁽¹⁹⁾ From the plane of the process connection.

⁽²⁰⁾ W P, W V, W F encapsulated antenna.

⁽²¹⁾ W S, W M, W K stainless steel antenna.

SAP-300	EView2	MultiCONT
MEASUREMENT CONFIGURATION \rightarrow	Measurement configuration \rightarrow Sensing Distance	Parameters \rightarrow P03 Sensing dist.
\rightarrow SENSING DIST.		

P04: Zero-level distance (tank height – H) This parameter must always be set, except for distance measurement.

FACTORY DEFAULT: See X_{max} in the table

The zero-level distance (P04) is the distance between the sealing plane of the process connection and the designated zero level of the level measurement (e.g., the bottom of the tank). The device calculates the level value from the P04 value by subtracting the measured level distance. The device automatically sets the measuring distance within the maximum sensing distance (P03). The distance given here is denoted by 'H' in the figures and formulas. The maximum distance that can be measured (X_{max}) is in the measuring distance table above, depending on the selected type. The set zero-level distance can be greater than the maximum measuring distance but not exceeding 60 m (200 ft).

Since the level measured by the device is the calculated difference between the P04 set for the given application and the distance (DIST) measured by the device, it is important to specify the zero-level distance (H) accurately.

SAP-300	EView2	MultiCONT
CALCULATION \rightarrow ZERO-LEVEL DISTANCE	Measurement configuration \rightarrow Zero-level distance	Parameters \rightarrow P04 Sensing dist.

P05: Close-end blocking (dead-zone)

FACTORY DEFAULT: See X_{min} in the table

The dead-zone (starting from the process connection of the transmitter) is the range within which the device cannot measure due to its physical limitations (antenna insertion length). This is the minimum measuring distance of the device, and it is type-dependent. See the X_{min} column of the type-specific measuring distance table above.

Close-end blocking is the user-defined extension of the dead zone, within which the device does not consider any echoes. This, e.g., enables the exclusion of objects interfering with the measurement close to the sensor. Close-end blocking cannot be less than X_{min} .

SAP-300	EView2	MultiCONT
MEASUREMENT CONFIGURATION \rightarrow \rightarrow NEAR BLOCKING	Measurement configuration \rightarrow Minimum (P05)	Parameters \rightarrow P05 Near blocking

P06: Far-end blocking

FACTORY DEFAULT: 0.0

In parameter **P06**, we can specify a level value below which the output will no longer follow any further level decrease. Far-end blocking is used when objects at the bottom of the tank (mixer, heating coil, funnel, etc.) cause measurement uncertainty within this range, e.g., because interfering echoes cannot be safely distinguished from the echoes of the measured surface. If an echo falls within the far-end blocking range (LEV < P06), the device sends a special signal and keeps the level value defined here on the output (see figure). The "Echo in far-end blocking range" flag (see Chapter 6.1) indicates that the echo is in the far-end blocking zone. Regardless of this, the "VALID" flag is active, but the "HOLD" flag remains inactive.

Far-end blocking can be deactivated with P06 = 0. Min. value: 0 / max. value: P04 - P05 - 5 cm (2")

A.) Level or volume measurement

• If the level drops below the value of P06:

It keeps a level value corresponding to P06 on the output and calculates the derived values from it.

 If the level goes above the far-end blocking limit: In level or volume measurement mode, the programmed tank dimensions are valid, so farend blocking does not affect the measured or calculated values.

B.) Open-channel flow measurement

Far-end blocking is usually applied to those low-level values, below which exact volume flow cannot be calculated.

- If the level in the flume drops below the blocking value:
 - The current loop output holds the value corresponding to Q = 0.
 - For 0-value transmission via HART "No Flow" or for displaying 0.
- If the level in the flume rises above the blocking value:

Flow value is calculated using the parameters specified in the program, so remote blocking does not affect measured values.

SAP-300	EView2	MultiCONT
$\begin{array}{l} \text{MEASUREMENT CONFIGURATION} \rightarrow \\ \rightarrow \text{FAR BLOCKING} \end{array}$	Measurement optimalization \rightarrow Far end (P06)	Parameters \rightarrow P06 Far blocking

FACTORY DEFAULT: Xmax

5.2. Current loop output

P08: Manual output current value

If the analog current loop output mode (P12b) is set to "Manual," the output current takes the value specified here, and the analog transmission switches off. A value between 3.8...20.5 mA is specified in this parameter. Caution! The device automatically switches to "Manual" current output mode when a new value is set in parameter P08. When 0 is entered, the device switches to "Automatic" current transmission mode (P12b = 0) and resets the value of parameter P08 to the factory setting.

In HART multi-drop mode (see parameter P19), the current loop output is fixed at 4 mA, as per standard, and the manual output current value (P08) does not apply.

SAP-300	EView2	MultiCONT	
OUTPUT SETUP \rightarrow ANALOG OUTPUT \rightarrow \rightarrow FIX CURRENT VALUE	Current output \rightarrow Fix output current (P08)	Parameters \rightarrow P08 Fix current	

P10: The value of the transmitted quantity assigned to 4 mA output current

In the case of "Automatic" mode of the analog current output, it is the PV value assigned to 4 mA (usually the lower limit of the measuring range in the case of level measurement). The device scales the (HART – PV, see P01) output value to the analog current output 4...20 mA range using the values specified in parameters P10 and P11.

SAP-300	EView2	MultiCONT
OUTPUT SETUP \rightarrow ANALOG OUTPUT \rightarrow \rightarrow PV VALUE OF 4 mA	Current output \rightarrow Assignment of 4 mA - PV	Parameters \rightarrow P10 PV assign 4 mA

P11: The value of the transmitted quantity assigned to 20 mA output current

(See table of **P03**) In the case of "Automatic" (current transmission) mode of the analog current output, it is the PV assigned to 20 mA (usually the upper limit of the measurement range in the case of level measurement). The device scales the (HART – PV, see P01) output value to the analog current output 4...20 mA range using the values specified in parameters P10 and P11. The values can be assigned inversely. (For example, 4 mA to 1 m [3.3 ft] level and 20 mA to 10 m [33 ft] level, or vice versa 20 mA to 1 m [3.3 ft] level and 4 mA to 10 m [33 ft] level.)

FACTORY DEFAULT: 4.0

FACTORY DEFAULT: 0.0

A: Shortest measurable distance

D: P10, P11 diagram valid for factory default settings

SAP-300	EView2	MultiCONT
OUTPUT SETUP \rightarrow ANALOG OUTPUT \rightarrow \rightarrow PV VALUE OF 20 mA	Outputs \rightarrow Current output \rightarrow \rightarrow Assignment of 20 mA - PV	Parameters \rightarrow P11 PV assign 20 mA

P12: - c b a Analog current loop output mode

FACTORY DEFAULT: 0000

Error current mode: the device indicates the error state on the current output according to the setting below. The error indication set as below persists until the error is cleared.

а	a Error current mode	
0	HOLD (holding last valid value)	
1	3.8 mA	
2	22 mA	

SAP-300	EView2	MultiCONT
OUTPUT SETUP \rightarrow ANALOG OUTPUT \rightarrow	Current output \rightarrow Error indication by the current	Parameters \rightarrow P12 current output
\rightarrow ERROR MODE	output	

Analog current output mode:

b	Analog current output mode	Description	
0	Automatic (current transmission)	The value of the output current is calculated from the measured value using the parameters P10 and P11. The output of the transmitter is active.	
1	Manual	The value of the output current is not calculated from the measured value. Instead, a fixed output current (P08) is sent to the output. In this mode, the setting of the fault current mode is irrelevant. Multi-drop HART communication mode 4 mA (P19) override!	

SAP-300	EView2	MultiCONT
OUTPUT SETUP \rightarrow ANALOG OUTPUT $\rightarrow \rightarrow$ CURRENT MODE	Outputs \rightarrow Current generator mode	Parameters \rightarrow P12 current output

Startup mode: when switching on or restarting after a power failure the current is transmitted until the device starts measuring. It is recommended to set it to the fault current of the system. For periodic applications, e.g., battery operation, selecting the "Fast" recovery mode is recommended to shorten the measurement cycle time.

С	Initial current	Resume time [s]	
0	< 3.8 mA (Normal)	1216 ⁽²²⁾	
1	> 22 mA (Fast)	34 ⁽²²⁾	

(22) Depending on the radar parameters. Note that it also depends on the conditions of use and how long after resuming operation the instrument will find an echo that can be evaluated.

SAP-300	EView2	MultiCONT
BASIC SETUP \rightarrow STARTUP CURRENT	Outputs \rightarrow Startup current	Parameters \rightarrow P12 current output

5.3. Relay output (optional)

P13: - c b a Relay function

FACTORY DEFAULT: 0001

а	Operating mode	Description
0	By PV (P14-P15-P16)	The operating mode of the RELAY optionally built into the device can be
1	"No ECHO" (echo loss): C1 = "On" (release)	set with this parameter. If it is set to "by PV," the RELAY operates based on the triggering (P14) and releasing (P15) values set.

2	"No ECHO" (echo loss): C2 = "On" (energize)	The "No ECHO" setting enables a switched (relay contact) error signal to the process controller.
3	FLOW impulse (P17)	Caution! When the device is de-energized, the relay releases, so C1 is ON.
4	C1 error (release)	
9	OFF	

SAP-300	EView2	MultiCONT
OUTPUT SETUP \rightarrow RELAY OUTPUT \rightarrow \rightarrow RELAY MODE	Outputs \rightarrow Relay output \rightarrow Relay mode	Parameters \rightarrow P13 Relay function

Operating mode: only relevant for operation by PV (P13a = 0)

b	Function		Programmable parameters	Description
0	Hysteresis	Level P14 P15 Time Energized: D A De-energized: D A C2 C1	P14, P15 At least 20 mm (0.787") hysteresis required between P14 and P15. P14 > P15 – normal operation P14 < P15 – inverted operation	The basic switching method of the
1	Window comparator	P14 P15 Time	P14, P15 At least 20 mm (0.787") hysteresis required between P14 and P15. P14 > P15 – normal operation P14 < P15 – inverted operation	RELAY set to "PV" mode can be adjusted.

SAP-300	EView2	MultiCONT
OUTPUT SETUP \rightarrow RELAY OUTPUT \rightarrow RELAY	Outputs \rightarrow Relay Function	Parameters \rightarrow P13 Relay function
FUNCTION		

FLOW impulse constant's (P17) unit (if P13:a = 3):

C	Metric (EU)		Imperial (US)	
0	m ³		ft ³	
1	liter		US gallon	
2	2 liter		GB gallon	
SAP-300 EView2		EView2		MultiCONT
OUTPUT SETUP \rightarrow RELAY OUTPUT \rightarrow \rightarrow VOLUME/PULSE UNIT		Outputs \rightarrow Relay outp \rightarrow Pulse constant unit	put \rightarrow Relay parameters \rightarrow	Parameters \rightarrow P13 Relay function

P14: Relay parameter – Relay on value

The measured PV value at which reaching the upper limit value is indicated on the RELAY output. Adjustable value range: Value is adjustable according to PV setting range.

Madela (ELI)

SAP-300	EView2	MultiCONT
OUTPUT SETUP \rightarrow RELAY OUTPUT \rightarrow \rightarrow ENERGIZED VALUE	Outputs \rightarrow Relay output \rightarrow Relay parameters \rightarrow Energized value	Parameters \rightarrow P14 Relay on value

P15: Relay parameter – Relay off value

The measured PV value at which reaching the lower limit value is indicated on the RELAY output. Adjustable value range: Value is adjustable according to PV setting range.

SAP-300	EView2	MultiCONT
OUTPUT SETUP \rightarrow RELAY OUTPUT \rightarrow DEENERGIZED VALUE	Outputs \rightarrow Relay output \rightarrow Relay parameters \rightarrow De- Energized value	Parameters \rightarrow P15 Relay off value

P16: Relay parameter – Relay delay

If the PV measurement value has reached the lower or upper switching value or an error has occurred in the case of an error signal, the actual RELAY operation is activated after this time, or after this time, a change is visible on the output.

Adjustable value range: 0...999 s.

SAP-300	EView2	MultiCONT
OUTPUT SETUP \rightarrow RELAY OUTPUT \rightarrow DELAY	Outputs \rightarrow Relay delay time	Parameters \rightarrow P16 Relay delay

FACTORY DEFAULT: 0

FACTORY DEFAULT: 0

FACTORY DEFAULT: 0

loss a stal (110)

P17: Relay parameter – Flow parameter value

In the case of FLOW, the relay gives a pulse per volume unit specified here. The volume unit is set in parameter P13:c. The pulse width is 100 ms.

The guaranteed maximum pulse density: < 3 seconds.

SAP-300	EView2	MultiCONT
OUTPUT SETUP \rightarrow RELAY OUTPUT \rightarrow VOLUME/PULSE VALUE	Outputs \rightarrow Relay output \rightarrow Relay parameters \rightarrow Pulse constant	Parameters \rightarrow P17 Flow pulse

5.4. **Digital communication**

P19: HART short address (device address)

FACTORY DEFAULT: 0

A unique device address by which the device is identified and managed via HART.

	a Description	
	0 Analog current loop output is active (current transmission via 420 mA)	
115 Analog current loop inactive (no current transmission, fixed 4		Analog current loop inactive (no current transmission, fixed 4 mA), multi-drop
P-3	00	EView2 MultiCONT

SAP-300	EView2	MultiCONT
OUTPUT SETUP \rightarrow DIGITAL OUTPUT \rightarrow \rightarrow ADDRESS	Device Identification \rightarrow HART Device Short Address	Parameters \rightarrow P19 Polling addr.

5.5. **Measurement optimization**

P20: **Damping Time**

....

FACTORY DEFAULT: 40

Damping time reduces unwanted fluctuations in displaying the measured data (e.g., ripples). If the level jumps, the transmitted value reaches 98% of the jump at this time. Unit: second (s). Value range: 0...999 s.

		For testing	Recommended
	Barely or non-volatile/waving media	0 s	2 s
	Highly volatile / strongly waving liquid	> 6 s	> 10 s
SAP-300		EView2	MultiCONT
MEAS. OPTIMIZATION \rightarrow DAMPING TIME		Measurement optimalization \rightarrow Damping time	Parameters \rightarrow P20 Damping time

FACTORY DEFAULT: 1

Damping example 1.

Damping time = 10 s Level change (level) = 2 m (6.6 ft)

Damping example 2. Damping time = 40 s Level change = 2...3 cm (0.39"...0.79") ripple If a higher degree of undulation is expected in the measured liquid column, it is recommended to set a higher damping time. This way, the fluctuation of the value of the transmitted level can be reduced.

P22: User slope correction factor (actual/measured)

It corrects the transmitted quantity according to the distance. If the value measured by the device differs from the value under real conditions, this multiplier can be used to refine the result. The output value is multiplied by the number set here. By default, the multiplier (1) does not modify the output.

Value range: 0.7...10

SAP-300	EView2	MultiCONT
CALCULATION \rightarrow USER SLOPE MULTIPLIER	Measurement optimalization \rightarrow Velocity user correction factor	Parameters \rightarrow P22 User slope corr

P25: --- a Echo selection

FACTORY DEFAULT: 00

The parameter P25a sets the echo selection strategy. Automatic operating mode is suitable for most applications. For special application requirements, a specific echo selection can be set as required.

а	Echo selection within measuring window	
0	Automatic	
1	First	
2	Second	
3	Largest	
4	Last	

SAP-300	EView2	MultiCONT
MEAS. OPTIMIZATION \rightarrow ECHO SELECTION	Measurement optimalization \rightarrow Echo selection \rightarrow \rightarrow Selection of Echo	Parameters \rightarrow P25 Echo Selection

FACTORY DEFAULT: 1.0

P26/P27: Level tracking speed

FACTORY DEFAULT: 600 m/h (1 970 ft / h)

FACTORY DEFAULT: 0010

The level tracking speed is the fastest level change speed that the device can continuously track. The device will only follow a level change slower than the set value. If the device senses a level signal change faster than this value, it assumes it is the result of a measurement error (e.g., condensation), it will not accept it, and the outputs will show the last valid value. Suppose this resulted from an incorrect measurement, and the result of the next measurement is plausible based on the set maximum speed. Then hold is canceled, and the actual measured level takes effect. If the rapid change in level was actually real, the device recalculates with each measurement whether the currently measured level is within the range determined by the product of the tracking speed and the elapsed time. If it is within the range, it cancels the hold, and the output adjusts to the new value according to the set damping parameter. Setting the level tracking speed is important when technological processes, especially during filling or discharging, produce interfering factors (e.g., ripples, foaming) that affect measurement stability. The set level tracking speed must be higher than the maximum filling/discharging speed prescribed by the technology. By entering it correctly, measurements during filling and discharging become more reliable. **Caution! In tanks with a conical or pyramidal bottom, the level change rate at the bottom of the tank increases significantly due to the shape of the tank.**

In this parameter pair, the filling and discharging speed can be set separately:

- P26 Level rising rate (filling speed)
- P27 Level descent rate (emptying speed)

The parameter's unit of measure: metric: [m/h]; US: [ft/h].

SAP-300	EView2	MultiCONT
MEAS. OPTIMIZATION \rightarrow LEVEL TRACK	Measurement optimalization \rightarrow Level \rightarrow	Parameters \rightarrow P26 Filling speed
SPEED \rightarrow FILLING SPEED \rightarrow	\rightarrow Level elevation rate (filling speed)	Parameters \rightarrow P27 Emptying speed
\rightarrow EMPTYING SPEED	Level descent rate (emptying speed)	

P28 -- b a Measurement loss handling

Echo loss handling:

S/ M

	а	Echo loss ("no-Echo") handling		
	0	Hold for the period in the P28b decade.		
	1	Hold (indefinitely)		
	2	Filling simulation (at detected speed)		
	3	Filling simulation (at P26/P27 maximum speed)		
	4	Tank empty (DIST = maximum / LEV = 0)		
	5	Tank full (DIST minimum / LEV = maximum)		
00		EView2		

SAP-300	EView2	MultiCONT
MEAS. OPTIMIZATION \rightarrow ECHO LOSS HANDLING \rightarrow OUTPUT MODE	Measurement optimalization \rightarrow Measurement loss management \rightarrow Echo loss handling	Parameters \rightarrow P28 ECHO loss.

Error indication delay:

This parameter defines the time elapsed between the occurrence of the error and the issued error signal (error current). During the delay, the output is holding the last valid measured value. The function is available for current output only if the error signal is set to a lower (3.8 mA) or upper (22 mA) error current.

b	Error indication delay	Notes
0	No delay	During a short echo loss, the last value is held in transmission for a period set in P28:b. After
1	10 s	that, it is transmitted via HART on bit 0 of DSE ⁽²³⁾ according to P12:a on the current loop output.
2	20 s	HART Measured value Held value (P28:b) Error code 2
3	30 s	
4	1 min	Echo loss Echo los Echo loss Echo loss Echo loss Echo loss Echo loss Echo lo
5	2 min	Error current 22 mA (P12a= 2) Time
6	5 min	Current Output Measured value Held value (P28:b) Holding last value (P12a= 0) Time
7	15 min	Error current 3.8 mA (P12a= 1) Time

When the error is gone, the device returns to measuring mode after the set delay.

⁽²³⁾ DSE – "Device Specific Error" indicator bits (HART). See Chapter 6 Troubleshooting.

SAP-300	EView2	MultiCONT
MEAS. OPTIMIZATION \rightarrow ECHO LOSS HANDLING \rightarrow OUTPUT HOLD TIME	Measurement optimalization → Measurement loss management → Error delay	Parameters \rightarrow P28 ECHO loss.

P32: Specific density of the measured medium

FACTORY DEFAULT: 1.0

If the device is set to weight transmission, the specific density of the material (medium) stored in the tank must be entered here for the weight calculation. The value is a relative ratio number (without a unit) compared to the density of water, i.e., 1 g/cm³. Value range: 0.01...10

SAP-300	EView2	MultiCONT	
CALCULATION → SPECIFIC GRAVITY	Measurement optimalization \rightarrow Specific gravity	Parameters \rightarrow P32 Spec. gravity.	

P34: Threshold offset

FACTORY DEFAULT: 0

It is used for simple relative modification of the acceptance threshold value set in the Echo diagram, the value range of which is -4000...+4000. It can increase (positive value) or decrease (negative value) the device's noise suppression ability compared to the default setting. If the value is 0, there is no change compared to the set threshold value. (See Chapter 7.4 Threshold mask).

SAP-	-300	EView2	MultiCONT	
MEAS	S. OPTIMIZATION \rightarrow THRESHOLD OFFSET	Measurement optimalization \rightarrow Threshold offset	Parameters \rightarrow P34 Thresh. offs.	

5.6. Volume measurement

P40: 0 - b a Output value calculation method

FACTORY DEFAULT: 0000

A selection of typical tank shapes for volume measurement. The tank dimensions can be set using parameters P41...P45 (see figures below). In the case of the OCT setting, the tank shape must be specified in a table.

	ba Tank		shape	Paramete	ers	
	Output Conver		sion Table (OCT)	See Chapte	er 5.8	
b0 Vertical cylindrical ta		Vertical cylindrical tar	nk with a convex bottom	P40+(b),	P41	
	01 Vertical cylindrical ta		nk with a conical bottom	P41, P43,	P44	
	02	Vertical rectangular tank with a pyramidal bottom		P41, P42, P43,	P44, P45	
	03	Horizontal of	cylindrical tank	P40(b), P41	, P42	
	04 Spher		ical tank	P41		
SAP-300		EView2		MultiCONT		
CALCULATION \rightarrow TANK SHAPE		Tank/Silo parameters \rightarrow Tank sh	nape	Parameters \rightarrow	P40 Tank type.	

	b	Tank bottom shape		
	0	Planar	Associating typical tank bottom shapes for the specific tank type to	
	1	Slightly convex	calculate the volume accurately. The exact form of the setting code can be seen in the drawings under parameters P4145.	
	2	Strongly convex		
	3	Hemispherical		
300		EView?	MultiCONT	

SAP-300	EView2	MultiCONT	
CALCULATION \rightarrow TANK SHAPE	Tank/Silo parameters → Bottom shape	Parameters \rightarrow P40 Tank type.	

P41-45: ---- Tank dimensions

These are the size parameters for the tank shape selected in parameter P40 according to the dimensions shown in the drawings below. For proper operation, it is important to specify these dimensions accurately.

P47: - - - a Total tank volume

FACTORY DEFAULT: 0.0

The total tank volume is required for empty volume calculation (see parameter P01).

If one of the outputs (PV, SV, TV, or QV) is set to transmit "Ullage volume," then the total volume can be entered in this parameter to calculate the actual transmitted value. In this case, the transmitted data is the difference between the total volume and the actual medium volume. Its unit is the volume unit set in the P01b decade.

Value range: 0...999,999.

SAP-300	EView2	MultiCONT	
CALCULATION \rightarrow TANK SHAPE	Tank/Silo parameters \rightarrow Total tank volume	Parameters \rightarrow P47 Total volume	
5.7. Open-channel flow measurement

P40: 0 - b a Volume flow measurement options

FACTORY DEFAULT: 0000

ba			Flume, forr	nula, data			Parameters
			Output Conversion	Table, See Chap	oter 5.8		
		Туре	Calculation formula	Q _{min} [l/s]	Q _{max} [l/s]	"P" [cm]	
00	nes	GPA-1P1	Q [l/s] = 60.87*h ^{1,552}	0.26	5.38	30	P46
01	flui	GPA-1P2	Q [l/s] = 119.7*h ^{1,553}	0.52	13.3	34	P46
02	hall	GPA-1P3	Q [l/s] = 178.4*h ^{1,555}	0.78	49	39	P46
03	ars	GPA-1P4	Q [l/s] = 353.9*h ^{1,558}	1.52	164	53	P46
04	O P	GPA-1P5	Q [l/s] = 521.4*h ^{1,558}	2.25	360	75	P46
05	Ľ.	GPA-1P6	Q [l/s] = 674.6*h ^{1,556}	2.91	570	120	P46
06	NIVELCO Parshall flumes	GPA-1P7	Q [l/s] = 1014.9*h ^{1,56}	4.4	890	130	P46
07	~ ~	GPA-1P8	Q [l/s] = 1368*h ^{1,5638}	5.8	1208	135	P46
08		GPA-1P9	Q [l/s] = 2080.5*h ^{1,5689}	8.7	1850	150	P46
09			Generic Par	shall flume			P46, P42
10		Palmer-Bowlus (D/2)				P46, P41	
11			Palmer-Boy	wlus (D/3)			P46, P41
12			Palmer-Bowlus	s (rectangular)			P46, P41, P42
13			Khafagi-	Venturi			P46, P42
14			We	eir			P46, P42
15			Rectangular o	or Bazin weir			P46, P41, P42
16			Trapezoi	dal weir			P46, P41, P42
17			Special trapezo	oidal (4:1) weir			P46, P42
18		V-shaped weir				P46, P42	
19		Thomson (90°) weir Circular weir				P46	
20						P46, P41	
21			Generic formula: Q[l/	/s] = P41 *h ^{P42} , h	[m]		P46, P41, P42
22			Generic formula: Q[l/s]	= P41 *h ^{P42} , h [P()0:cb]		P46, P41, P42

P40: 0 - b a Volume flow measurement options (continued)

ba	Flume, formula, data		Parameters	
30	4" Palmer-Bowlus (D/2)		P46	
31		6" Palmer-Bowlus (D/2)		P46
32		8" Palmer-Bowlus (D/2)		P46
33		10" Palmer-Bowlus (D/2)		P46
34		12" Palmer-Bowlus (D/2)		P46
35	15" Palmer-Bowlus (D/2)		P46	
36	18" Palmer-Bowlus (D/2)		P46	
37	21" Palmer-Bowlus (D/2)		P46	
38	24" Palmer-Bowlus (D/2)		P46	
SAP-300		EView2	MultiCONT	
CALCULATION \rightarrow FLOW MEASUREMENT		Flow measurement \rightarrow Open channel flow measurement methods	Parameters -	→ P40 Tank type.

FACTORY DEFAULT: 0

P40=00	NIVELCO Parshall flume (GPA1-P1 through GPA-1P9) See details in the manual of the Parshall flume.			
08				PiloTREK PiloTREK
P40=09	Generic Parshall flume 0,305 < P42 (throat widt Q[1/s] = 372 P42 · (h/0,	h) < 2,44		
	2,5 < P42 Q [I/s] = K*P42*h ^{1,6} P = 2/3*A	P42 [m] 3,05 4,57 6,10 7,62 9,14 15,24	K 2,450 2,400 2,370 2,350 2,340 2,320	PiloTREK P46

P40= 10	Palmer-Bowlus (D/2) flume Q [m ³ /s] = f(h1/P41) * P41 ^{2,5} , where h1[m] = h+(P41/10) P41 [m]	P04 P41 D/2 D/10 D/10
P40= 11	Palmer-Bowlus (D/3) flume Q [m ³ /s] = f(h1/P41) * P41 ^{2.5} , where h1[m]= h+(P41/10) P41 [m]	P04 P41 D/3 D/10 D/10
P40= 12	Palmer-Bowlus (rectangular) flume Q [m³/s] = C*P42*h ^{1,5} , where C = f(P41/P42) P41 [m], P42 [m]	P41 P41 D/10

P40= 13	Khafagi-Venturi flume Q [m³/s] = 1,744 ⋅P42 ⋅ h ^{1.5} + 0,091 ⋅ h ^{2.5} P42 [m] h [m]	PiloTREK P46 → h
P40= 14	Weir 0,0005 < Q [m ³ /s] < 1 0,3 < P42 [m] < 15 0,1 < h [m] < 10 Q [m ³ /s] = 5,073 • P42 • h ^{1,5} Accuracy: ±10%	99 h h
P40= 15	$eq:rescaled_$	P42

P40= 16	Trapezoid weir 0,0032 < Q [m³/s] < 82 20 < P41[°] < 100 0,5 < P42 [m] < 15 0,1 < h [m] < 2 Q [m³/s] = 1,772 • P42 • h ^{1.5} + 1,320 • tg(P41/2) • h ^{2.47} Accuracy: ±5%	bo production of the second se
P40= 17	Special trapezoid (4:1) weir 0,0018 < Q [m³/s] < 50 0,3 < P42 [m] < 10 0,1 < h [m] < 2 Q [m³/s] = 1,866 • P42 • h ^{1,5} Accuracy: ±3%	
P40= 18	V-shaped weir 0,0002 < Q [m³/s] < 1 20 < P42[°] < 100 0,05 < h [m] < 1 Q[m³/s] = 1,320 ⋅ tg(P42/2) ⋅ h ^{2,47} Accuracy: ±3%	Horizontal Antiparticip

P40= 19	THOMSON (90°) weir $0,0002 < Q [m^3/s] < 1$ $0,05 < h [m] < 1$ $Q [m^3/s] = 1,320 \cdot h^{2,47}$ Accuracy: ±3%	Pdd h Pd2
P40= 20	Circular weir $0,0003 < Q [m^3/s] < 25$ 0,02 < h [m] < 2 $Q[m^3/s] = m * b \cdot D^{2.5}$, where $b = f (h/D)$ $m = 0,555+0,041 \cdot h/P41+(P41/(0,11 \cdot h))$ Accuracy: $\pm 5\%$	
P40=21	Generic formula: Q [l/s] = P41*h ^{P42} h [m]	
P40=22	Generic formula: Q [I/s] = P41*h ^{P42} 'h' will be substituted in the unit set in P00c and P00b.	

P46 is the distance between the sensor's process connection and the liquid's surface, which can be measured at the limit of the start of the flow (Q = 0); see figures. Minimum value: P05 + 5 cm (2"). Maximum value: P03.

5.8. Output Conversion Table – OCT programming

P40: d - [] [] OCT operation

FACTORY DEFAULT: 0

d	Output data Measurement mode	Reference
0	Output Conversion Table OFF	See Chapter 5.8
1	Output Conversion Table ON	

An output signal of any characteristic can be assigned to the level values measured by the device. The unit of the output signal is the unit set in parameter P00 or P02 of the output data type assigned to the "HART - PV" output in parameter P01. The characteristic can be specified with a maximum of 100 points. Between the points, the device calculates the output signal from the measured level by linear interpolation and after the last point by linear extrapolation. The OCT can be used to assign the measured level to an arbitrary output signal. Its typical application is the calculation of level to volume for tanks that are not included in the tank shape list (e.g., dented) and specifying individual channel characteristics in the case of open channel flow measurement.

SAP-300	EView2	MultiCONT
CALCULATION \rightarrow OCT TABLE	OC-Table \rightarrow Linearization (See Chapter 7.5)	Parameters \rightarrow P40 Tank type.

Conditions for correct programming of data pairs

- The table must start with L(1)= 0 and R(1)= is the output quantity assigned to it.
- Column "L" may not contain identical values.
- Columns "L" and "R" can only have increasing values from top to bottom.
- If the table contains less than 100 points, column "L", in the row following the last valuable data pair, must be 0.

i	L (left column) MEASURED LEVEL	R (right column) OUTPUT VALUE
1	0	R(1)
2	L(2)	R(2)
	L(i)	R(i)
nn	L(nn)	R(nn)
nn+1	0	
100		

SAP-300	EView2	MultiCONT
CALCULATION \rightarrow OCT TABLE	OC-Table \rightarrow OCT list (See Chapter 7.5)	Parameters \rightarrow P40 Tank type.

- 5.9. Service diagnostic parameters (read only)
- P60: ---- Number of operating hours since issuing [h]
- P61: ---- The number of operating hours since the last power-on [h]
- P62: ---- The number of operating hours of the relay (closed time of contact C2) [h]
- P63: ---- The number of switching cycles of the relay
- P64: ---- The current temperature of the device's electronics [°C / °F]
- P65: ---- The highest temperature of the device ever measured [°C / °F]
- P66: ---- The lowest temperature of the device ever measured [°C / °F]
- P70: ---- Number of detected peaks (current)
- P71: ---- Magnitude of selected echo (raw value)
- P72 ---- The amplitude of the selected echo [dB]
- P73: The distance of the selected echo [m]
- P74: Echo lost/shot ratio

5.10.	Flow measurement control parameters (read only)		
P76:		Measuring height of the flow measurement ('h' value)	
	Me	asuring height required for flow measurement. This value is the "h" value in the flow calculation formula. (See P46)	
P77:		TOT1 totalizer (can be cleared)	
P78:		TOT2 totalizer	
5.11.	Output o	control parameters (read only)	
P79:		Current generator re-measured output current [µA]	
P80:		Current generator calculated output current [mA]	
P81:		Relay output status	
5.12.	Hardwar	re / Software versions (read only)	
P94/9	5:	Software code 2 / 3 (SLAVE MCUs)	
P96:		Software code 3 (MAIN MCU)	
P97/9	8:	Hardware identification code	

6. TROUBLESHOOTING

6.1. Status and error indication in HART® communication

Status and error indication in HART communication: The response code, according to the HART standard, is two 16-bit words after the "Response code" bytes, respectively "Errors and Warnings" and "Status."

Bit №	Device Specific Error/Warning flags	Meaning, possible reason, solution				
0	No echo (<i>Warning</i>)	The device cannot detect the surface to be measured, so there is no echo or there are too many echoes due to interference. Ensure proper installation! If the problem persists, contact the dealership.				
1	EEPROM is not detected (Error)	The parameter memory of the device is compromised. Contact dealership.				
2	EEPROM checksum error detected (Error)	Some data stored in the device's parameter memory has been corrupted. Factory default settings are restored by the device. If the device's parameter memory fails frequently, contact the dealership.				
3	OCT input side integrity error (Error)	The data in the left (L) column of the Output Conversion Table (OCT) is not incremental. Correct it.				
4	OCT output side integrity error (Error)	The data in the right (R) column of the Output Conversion Table (OCT) is not incremental. Correct it.				
5	OCT item count is <2 (<i>Error</i>)	Too few points are entered into the Output Conversion Table (OCT). At least two ($i \ge 2$) points (elements) must be entered.				
6	Input level over the OCT input side (overload) (Warning)	The measured level, as the input value of the OCT, points out of the range entered in the left (L) column of the OCT. Enhance the range.				
7	EEPROM reinitiated (EEPROM layout damaged or missing) (<i>Error</i>)	The data structure stored in the device's parameter memory is corrupted. The device restored the factory default settings. If the device's parameter memory fails frequently, contact the dealership!				
8	—	-				
9	Echo in near blocking range (Warning)	The measured surface is too close, within the device's minimum measuring range (X_{min}). Set the close-end blocking (P05) to a smaller value, or change the technology to ensure that the surface to be measured does not come so close to the sensor of the device.				
10	Echo in far blocking range (Warning)	The measured surface is too far, outside the device's maximum measuring range (X_{max}). Set the far-end blocking (P05) to a larger value, or change the technology to ensure that the surface to be measured does not get so far from the sensor of the device.				
11	—	-				

Bit №	Device Specific Error/Warning flags	Meaning, possible reason, solution				
12	One or more slave controller(s) failure! (Error)	One of the device's auxiliary controllers has failed. The probability of a firmware error is high. Performing a complete firmware update with NiFlash (including synchronization) may solve the problem. If unsuccessful, contact the dealership.				
13	Relay failure (Error)	If the device has an optional relay, it is faulty. Contact the dealership.				
14	Parameter table integrity error (Error)	The value of one or more parameters is not consistent with the associated parameters. Correct the parameter value.				
15	Sensor failure (Error)	The radar sensor is faulty. There can be several reasons for this, e.g., the data connection with the radar sensor unit is inadequate or insufficient energy available for the measurement. The terminal voltage of the device must be above the prescribed minimum in all circumstances! Check the voltage conditions of the loop by measurement and change it as necessary so that the electrical conditions for the terminals of the device are met. Contact the dealership if the power supply voltage level is correct and the error persists.				

Bit №	Device-Specific Status flags (DSS)	Explanation				
0-2	PV value type (DIST, LEV, VOL, MASS, FLOW, LEV%, VOL%,)	The type of the primary transmitted value (PV) by P01a.				
3	Manual programming is active (Status)	The device is in manual programming mode. (Only on devices (WG□) featuring a display.)				
4	Remote programming is active (Status)	The device is in remote programming mode.				
5	Simulation is active (Warning)	The device is in simulation mode. Caution! The output value is independent of the measured value.				
6	User password is set (Status)	Password protection is active.				
7	Relay energized (Status)	Relay is energized.				
8	User lock is active (Status)	User lock is active. The parameters are protected by a password set by the user.				
9	Factory lock is active (Status)	Factory lock is active. The factory default settings and calibration data are locked.				
10	SAP display is connected (Status)	A display is connected to the device. (Only on devices (WGD) featuring a display.)				
11	Diagnostic mode is active (Status)	The device is in diagnostic mode.				
12	HOLD (Warning)	The transmitted value is on hold.				
13	Calibration mode is active (Status)	The device is in calibration mode.				
14	Valid (Status)	The transmitted value is refreshed and valid.				
15	HS communication mode is active (Status)	The device is in high-speed communication mode.				

6.2. Typical application errors

Error	Possible cause	Solution
The transmitted value takes a value from a close range (most often around 0.2 m).	Condensation or dirt on the antenna.	Clean the antenna or use a threshold mask to block the interfering echo.
The measured value does not change despite the level change.	This typically happens when echo loss occurs. In most cases, this is: – during foaming of the medium – dirt on the antenna – excessive waves – incorrect max. (P03) measurement setting – it can happen in cases of echo below the threshold curve.	Remove dirt from the antenna. Check the surface of the medium to be measured, if necessary, take measures to reduce foaming or ripples! Check threshold settings. See Chapter 7.3! Check the P03 maximum measuring distance setting.

7. EView2 INSTRUCTIONS

If necessary, install the EView2 HART configuration software (hereafter EView2) as described in Chapter 3 of the program's manual. The software can be downloaded from www.nivelco.com.

Electrical connections: Start the program and search for the transmitter with the program (for more information, see also EView2 user manual, Chapter 4).

From the devices found during the detection, select the device you want to configure or program and open the "device programming" window of the device (Chapters 4.4 and 4.5 of the EView2 user manual). All the necessary parameters and function settings can be changed with EView2.

This chapter only describes the specific functions related to PiloTREKs and two programming examples.

7.1. Device Status Window

To invoke the "Device Status Window" in EView2, right-click on the device line in the "Device List" in the main window and select the "Show Device Status Window" menu item in the popup window. This window shows the status and error messages of the PiloTREK. (See Chapter 6.1) The "Device Status Window" can also be summoned in the "Polling" window by activating the corresponding check box.

7.2. Echo Diagram (oscilloscope function)

Click the "Echo Diagram" button in EView2 to display the device's Echo Diagram. A window called "Echo map" will appear. This diagram shows the reflection curve measured by the device. In addition, this window can be used to adjust the threshold level. To update the chart or read the data, press the "Refresh" button on the bottom line of the window (or press the F4 key).

After a successful reading, an echo graph similar to the attached "Echo Diagram" appears. The displayed information content can be selected in the legend. The "Echo list" displays the location and data of the echo peaks evaluated by the device, of which the selected level signal is marked with the inscription "Selected peak."

7.3. Threshold settings

The function is intended for advanced users. Incorrect setting may render the device unable to measure!

The purpose of the threshold value and the threshold line is to mask unwanted echoes from the measurement. Echo peaks below the threshold level are not taken into account in the evaluation. Setting the threshold may be necessary if the device selects the wrong echo peak as the level, for example because there is an interfering object in the path of the ultrasound during the measurement. Before changing the threshold curve, it is recommended to minimize interfering echoes by selecting the correct installation location of the device.

The threshold can be edited in the Echo diagram window of the EView2 software. In addition, the height of the entire threshold can be adjusted in a simplified way with the P34 "Threshold offset" parameter among the measurement optimization parameters. The main threshold line is used to trace the general shape of the echo curve. Threshold highlights, also known as threshold masks, are available to mask interfering echo peaks protruding from the curve.

The threshold editing mode can be activated either by selecting "Threshold Edit Enable" in the bottom menu bar or by selecting "Threshold settings" \rightarrow "Threshold Edit Enable" in the context menu that appears when clicking the right mouse button. In this case, the threshold editing function bar appears in the upper half of the window, and the editable points are marked red on the threshold curve. If no editable point is selected, the "Threshold offset" can be set in the function bar, so the height of the basic threshold curve consisting of three points is the same. If an editable point is selected by clicking the left mouse button, its position can also be altered separately.

Threshold points can also be moved with the mouse by clicking and holding the left mouse button over the selected point. The changes only take effect in the device after pressing the "Apply Threshold settings" button, which can also be found in the threshold editing function bar or the context menu. To display the evaluation corresponding to the new threshold, refresh the chart with the "Refresh" button in the bottom menu bar (or the F4 function key).

7.4. Threshold mask

The "Threshold Mask" function masks an echo peak that interferes with the measurement. To do this, after pressing the "Add new threshold mask" button in the threshold editing function bar, click the left mouse button in the diagram over the position where you want to place the threshold highlight, or if using the context menu, click with the right mouse button on the desired position, then select the "Add new threshold mask" function. The position and width of the threshold editing function bar by selecting the center point of the highlight as described above. In the case of graphic editing, its position and height can be adjusted by dragging the center point, and its width can be adjusted by dragging the corner point. A total of 4 threshold highlights can be defined. If there are more interfering echoes than 4, it is better to choose another mounting position.

Caution! The "Cursor On" function does not provide an exact value. It only calculates the value of a given point based on the graphical representation.

The threshold highlight can be deleted by selecting its center point, or turning the "Enabled" switch off in the threshold editing function bar, or selecting the "Del current threshold mask" function in the context menu. Until the changes are applied to the device with the "Apply Threshold settings" function, it uses the previous (current) threshold settings, which can be read with the "Read Threshold settings" function. The factory default settings can be restored with the "Reset Threshold Settings" function.

7.5. The output conversion table (OCT) – (EView2 OC-Table)

The output conversion table (OCT) is active if table correction is selected in parameter P40. See Chapters 5.7, 5.8, and 5.9. The OCT is filled in using the EView2 software. The conversion table is usually used for volume measurement but can also be used for weight or flow measurement.

This table assigns different output values to the measured levels. The value on the left is always the measured level (relative to the zero-level distance (P04) setting), and the value on the right is the output value for the particular level. The unit associated with the output value is determined by the setting of the "Output source" (P01, HART - PV) and "Output units" (P02) parameters.

The output value is determined by linear interpolation between two value pairs, so the accuracy of the conversion depends on the density of the associated value pairs. After the last pair of points, the output value is calculated by linear extrapolation. The maximum number of pairs is 100. More information:

- Each new level value entered must be greater than the previous one.
- The length and volume units can be changed later on without changing the data in the table (length unit, volume unit). Take heed that the units in the table are always interpreted by the device according to the currently set units of measure. Therefore, the OCT must always be filled in with values corresponding to the set units.
- Caution! When using the conversion table, the setting of the current output (P10/P11) is also interpreted according to the value range (and measurement unit) defined on the left side of the table. Accordingly, the appropriate setting of the P10/P11 parameters is recommended after uploading the table.
- If the conversion table is filled in incorrectly, the output (transmitted) value will not be correct either!

A user-defined conversion table (e.g., "level - volume") can be created using EView2 as follows:

To fill in or set the output conversion (OC) table of the device, go to the "Device Settings" \rightarrow "OC-Table" tab in EView2. Upload or modify the table according to "EView2 Instructions for Use – Chapter 6.4." If the appropriate changes have been made in the table and it has been filled in correctly, press the "Send" button on this page ("OC-Table" tab) on the right side under the "Get" button to download the table to the device.

In the following example, five-point programming is presented, example: "Level - Volume" conversion

Step	Action	Entered data / chosen value
1	In EView2, open the "Device Settings" window of the given device.	
2	Go to the point called "Application" and select the unit system ("Calculation system").	Metric (EU)
3	Select a length unit (Engineering Unit).	m
4	Go to "Measurement configuration" and select "Measurement mode (PV source): volume transmission" from the list.	Volume
5	Select a volume unit in the "Volume Units" section.	m ³
6	Go to "Measuring distances" and enter the tank height in the field named "Zero-level dist." (Click on the field and enter the value).	6.00 m
9	Press the "Send" button in the lower right corner of the window to download the new values to the device.	Wait until the download process is complete.
10	Go to the point called "OC-Table." Fill in the table called "OCT list" with the appropriate values. A maximum of 100 points can be entered. Each level and volume point must be entered. Each subsequent point must be larger than the previous one. New lines can be created by pressing the "Ctrl + Insert" key combination or selecting "Add new item" in the popup menu of the right mouse button. A line can be deleted by pressing the "Ctrl + D" keys together.	See the following table (Example for completing OCT)
11	To download the table to the device, press the "Send" button located on this page ("OC-Table" tab) on the right side under the "Get" button.	

Example of filling out the OCT

Point	Level (Source column)	Volume (Output column)
1	0.0 m (0.0 ft)	0.0 m ³ (0.0 ft ³)
2	0.20 m (0.66 ft)	0.5 m ³ (17.6 ft ³)
3	0.75 m (2.46 ft)	1.0 m ³ (35.3 ft ³)
4	1.00 m (3.30 ft)	1.5 m³ (53 ft³)
5	5.60 m (18.37 ft)	16.8 m ³ (593.3 ft ³)

Additional procedure for displaying 4...20 mA current output (using EView2)

Step	Action	Entered data / value		
1	Go to "Outputs" and set "Current generator mode" to "Auto" (default setting)	Auto		
2	In the "Error indication" field, set the error status to the appropriate mode (default setting).	Hold-		
3	3 Select "Assignment of 4 mA – PV (P10)" and enter the volume value corresponding to the output current value of 4 mA. 0.5 m ³ (1			
4	Select "Assignment of 20 mA – PV (P11)" and enter the volume value corresponding to the output current value of 20 mA. 16.80 m ³ (593.3 ft ³)			
5	Press the "Send" button in the lower right line of the window to download the new values to the device.			
6	Press the "X" close button to exit the device settings window.			

7.6. Programming example 1 – configuring level measurement (using EView2)

Configuring level measurement in a 9 m (29.5 ft) tank (example). Level measurement is the factory default mode, it is sufficient to enter only the actual tank height (P04 = 9.0 m [29.5 ft]). The max. measuring length of the WP-200 radar configured by the manufacturer is 10.0 m (33 ft), so it covers the required 9 m (29.5 ft).

Step	Action	Entered data / value		
1	Open the "Device Settings" window corresponding to the given device in EView2.	The program reads and displays the device settings.		
2	Select "Measurement configuration."			
3	Click on "Zero-level dist." (Zero-level distance) field.	Data in the field: 10.000 [m] (33.000 [ft])		
4	Enter the new value.	9,000 [m] (29.500 [ft])		
5	Press the "Send" button in the lower right corner of the window to download the new value to the device.	The device will work according to the new settings after the download is complete.		
6	Press the "X" close button to exit the device settings window.			

7.7. Programming example 2 – configuring the current loop output (using EView2)

Custom scale setting:

Example: 4 mA indicates the 1 m level [3.3 ft], 20 mA indicates the full tank, for example 8 m (26.2 ft) maximum level, upper error current.

Set current range 4...20 mA with 22 mA error indication.

Choose a suitable minimum and maximum value for the scale of the measurement.

Step	Action	Entered data / value
1	In EView2, open the "Device Settings" window corresponding to the given device.	The program reads the device settings and displays them.
4	Select "Outputs"	
5	Select the "Error indication" drop-down list.	The field will read "Hold"
6	Select the new setting value (22 mA) in the drop-down list.	The field will read "22 mA"
7	Select the "Assignment of 4 mA – PV" data field.	The field will read "0.000 [m]" (0.000 [ft])
8	Enter the new value. This sets the level corresponding to the 4-mA minimum output (1 m).	The field will read "1.000 [m]" (3.300 [ft])
9	Select the "Assignment of 20 mA – PV" data field.	The field will show the maximum measuring distance by default.
10	Switch to 8.000 m (26.20 ft). This sets the level corresponding to the 20-mA maximum output (8 m [26.2 ft]).	The field will read "8.000 [m]" (26.20 [ft])
11	Press the "Send" button in the lower right line of the window to download the new values to the device.	After the download is complete, the device will use the new settings.
12	Press the "X" close button to exit the device settings window.	

8. PROGRAMMING WITH SAP-300 DISPLAY UNIT

The main parameters of PiloTREK can also be set using the SAP–300 display unit. By default, the display shows the primary measurement result (from which the output current is calculated). In addition to the measurement value displayed in large figures, a bar graph representing the output current value is also shown on the right.

Programming is done via a text menu. Use the (E) / ⊕ / ⊕ keys to navigate through the menu.

8.1. SAP–300 display unit

Display:

Ambient temperature:

–20...+65 °C (–4...+149 °F)

Housing material: PBT fiberglass-reinforced plastic (DuPont®)

The SAP–300 is a plug-in module with an LCD (universal – can be used in other NIVELCO devices, provided that the device's software supports SAP–300).

64 × 128 dot matrix LCD, with symbols, units, and column diagram

Caution!

The SAP-300 is based on LCD technology, do not expose the SAP-300 to prolonged heat or sunlight as the display may be damaged.

If it is not possible to protect the PiloTREK from sunlight or if the PiloTREK is to be used outside the operating temperature range of the SAP–300, do not leave the SAP–300 in the PiloTREK!

8.2. The PiloTREK during programming

By default, the PiloTREK displays the main measurement data on the SAP-300 display (hereafter referred to as the display).

To enter the programming menu, press the ⁽) button. Use the ⁽) / ⁽) buttons to navigate between the menu items. You can also enter the selected menu item by pressing the ⁽) button. To return to the previous menu level, press the ⁽) button.

The buttons only work when the SAP-300 is present!

While using the menu, the instrument continues measuring without interruption. Any setting changes made in the menu will take effect when you exit the menu. If the PiloTREK menu is not exited, the PiloTREK will automatically return to the measurement display state after 30 minutes. Any changes made in the menu will then be ignored.

If the SAP-300 is unplugged from PiloTREK, PiloTREK will automatically exit the menu and ignore any changes made to the menu.

Since programming with the SAP–300 (manual programming) and remote programming via HART (REMOTE MODE) create a competing situation, only one mode can be used at a time.

Manual programming has priority!

During manual programming, the device sends a "device busy" signal to the HART master (HART Response code: 32 - Device is busy). In remote programming mode, REM appears on the top right of the display. In this case, manual programming of the device is disabled, and the menu cannot be accessed.

If no SAP-300 is connected, the LEDs will become visible, the COM LED will flash to indicate HART communication, and the VALID LED will indicate if the data measured by the device is valid.

8.3. Manual programming While on a submenu item, pressing the ⓒ button will change the parameter or access an additional submenu. There are two modes: <u>Text list:</u> It can be navigated like the menu list. Accept selection by pressing ⓒ, and discard it by pressing the ⊕ button. Editable number field: It is used to edit numeric values. Editing is assisted by a cursor (inverse character). The number on the cursor position can be changed with the ④ / ④ keys (no over-, under-, or underflow between characters). The cursor can be moved to the left with the ⊕ arrow key (max. 9 characters space, including the decimal point). When you reach the end of the field, the cursor returns to the first position on the right. The modification is completed by pressing the ⓒ button. PiloTREK will then check the value entered, and if it is not correct, the message "WRONG VALUE!" will appear on the bottom line.

9. PARAMETER LIST

Pr.	Page	Name	Value	Pr.	Page	Name	Va	alue	Э
			dcba				d c	; b	а
P00	17	Unit system, default unit, region parameter		P20	30	Damping Time			
P01	19	Output source		P21		—			
P02	19	Output units		P22	32	User Slope Correction Factor			
P03	21	Maximum sensing distance		P23		—			
P04	21	Zero-level distance (tank height – H)		P24		—			
P05	23	Close-end blocking (dead-zone)		P25	32	Echo selection			
P06	23	Far-end blocking		P26	33	Level rise speed (filling speed)			
P07		-		P27	33	Level drop speed (discharging speed)			
P08	25	Manual output current value		P28	33	Measurement loss management			
P09		-		P29		—			
P10	25	Output value assigned to 4 mA		P30		—			
P11	25	Output value assigned to 20 mA		P31		—			
P12	26	Analog current loop output's mode		P32	34	Density of the measured medium			
P13	27	Relay output		P34	34	Threshold offset			
P14	29	Relay parameter – Trigger value		P40	35	Tank shape			
P15	29	Relay parameter – Release value		P41	39	Tank dimensions / Volume flow options			
P16	30	Relay parameter – Delay		P42	39	Tank dimensions / Flume – weir dimensions			
P17	30	Relay parameter – Flow parameter value		P43	39	Tank dimensions / Flume – weir dimensions			
P18		—		P44	39	Tank dimensions / Flume – weir dimensions			
P19	30	HART address		P45	39	Tank dimensions / Flume – weir dimensions			
				P46	44	The distance to the surface without flow			
				P47	36	Total tank volume			

Pr.	Page	Name	Pr.	Page	Name
P60	45	Number of operating hours since issuing [h]	P80	46	Current generator calculated output current [mA]
P61	45	The number of operating hours since the last power-on [h]	P81	46	Status of relay outputs
P62	45	The number of operating hours of the signal detector (closed time of contact C2) [h]	P82		-
P63	45	The number of switching cycles of the relay	P83		_
P64	45	The current temperature of the electronics [°C / °F]	P84		_
P65	45	The highest temperature of the device ever measured [°C / °F]	P85		_
P66	45	The lowest temperature of the device ever measured [°C / °F]	P86		_
P67		_	P87		_
P68		_	P88		_
P69		_	P89		_
P70	45	Number of detected peaks (current)	P90		_
P71	45	Magnitude of selected echo [raw value]	P91		_
P72	45	Amplitude of selected echo [dB]	P92		_
P73	45	Distance of selected echo [m]	P93		_
P74	45	Echo lost / shot rate	P94	46	Software identifier (RADAR)
P75			P95	46	Software identifier (COPROC)
P76	46	Measuring height of the flow measurement (read only) (LEV)	P96	46	Software identifier (MAIN MCU)
P77	46	TOT1 totalizer (clearable)	P97	46	Special config mode (read only)
P78	46	TOT2 totalizer	P98	46	Hardware code (read only)
P79	46	Current generator re-measured output current [µA]	P99		

wes200en23p01 May, 2023 NIVELCO reserves the right to change anything in this manual without notice.